题目描述

小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 n 个建筑,每个建筑的高度是 1 到 n 之间的一个整数。

小 Z 有很严重的强迫症,他不喜欢有两个建筑的高度相同。另外小 Z 觉得如果从最左边(所有建筑都在右边)看能看到 A 个建筑,从最右边(所有建筑都在左边)看能看到 B 个建筑,这样的建筑群有着独特的美感。现在,小 Z 想知道满足上述所有条件的建筑方案有多少种?

如果建筑 i 的左(右)边没有任何建造比它高,则建筑 i 可以从左(右)边看到。两种方案不同,当且仅当存在某个建筑在两种方案下的高度不同。

输入格式

第一行一个整数 T,代表 T 组数据。 接下来 T 行,每行三个整数 n,A,B。

输出格式

对于每组数据输出一行答案 mod 1e9+7。

输入输出样例

输入 #1

2
3 2 2
3 1 2

输出 #1

2
1

说明/提示

对于 100% 的数据 :1≤n≤50000, 1≤A,B≤100, 1≤T≤2000001。

​ 这也出到我考试题里了,看到后一脸懵,题都没看懂(因为是简化题面),爆0了(我吐了)

​ 这道题正解是组合数\(+\)第一类斯特林数。

​ 我们如果要有A个前缀最大值,B个后缀最大值,我们可以把\(n\)个数分为\(A + B - 1\)段:高度为\(n\)的为一段,其余的是一个高的挡住一群矮的为一段,大概是这样的:

​ 那么问题可以转化为:将\(n - 1\)个数分为\(A + B - 2\)段,并且每一段不能为空,这不就是第一类斯特林数吗?

​ 最后再考虑每一段在最高的那段左边还是右边就好了,最高的那段左边应该有\(A - 1\)段,右边应该有\(B - 1\)段,所以再乘上个\(C_{A +B - 2} ^ {A - 1}\)就好了。

#include <iostream>
#include <cstdio>
#include <cctype> using namespace std; inline long long read() {
long long s = 0, f = 1; char ch;
while(!isdigit(ch = getchar())) (ch == '-') && (f = -f);
for(s = ch ^ 48;isdigit(ch = getchar()); s = (s << 1) + (s << 3) + (ch ^ 48));
return s * f;
} const int N = 3005, M = 3005, mod = 998244353;
int n, a, b;
int jc[N], inv[N], c[M][M], s[N][M]; void make_C() {
jc[0] = jc[1] = inv[0] = inv[1] = 1;
for(int i = 2;i <= M - 5; i++) jc[i] = 1ll * jc[i - 1] * i % mod;
for(int i = 2;i <= M - 5; i++) inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
for(int i = 2;i <= M - 5; i++) inv[i] = 1ll * inv[i - 1] * inv[i] % mod;
for(int i = 0;i <= M - 5; i++) c[i][0] = 1;
for(int i = 1;i <= M - 5; i++) {
for(int j = 1;j <= M - 5; j++) {
if(i >= j) c[i][j] = 1ll * jc[i] * inv[j] % mod * inv[i - j] % mod;
}
}
s[0][0] = s[1][1] = 1;
for(int i = 2;i <= N - 5; i++) s[i][1] = 1ll * s[i - 1][1] * (i - 1) % mod;
for(int i = 2;i <= N - 5; i++) {
for(int j = 2;j <= M - 5; j++) {
if(i >= j) s[i][j] = (s[i - 1][j - 1] + 1ll * s[i - 1][j] * (i - 1) % mod) % mod;
}
}
} void init() {
scanf("%d %d %d", &n, &a, &b);
} void work() {
printf("%lld\n", 1ll * s[n - 1][a + b - 2] * c[a + b - 2][a - 1] % mod);
} int main() { // freopen("onesentence.in","r",stdin); freopen("onesentence.out","w",stdout); make_C();
init(); work(); // fclose(stdin); fclose(stdout);
return 0;
}

P4609 建筑师的更多相关文章

  1. Luogu P4609 [FJOI2016]建筑师&&CF 960G Bandit Blues

    考虑转化题意,我们发现其实就是找一个长度为\(n\)的全排列,使得这个排列有\(A\)个前缀最大值,\(B\)个后缀最大值,求方案数 我们考虑把最大值拎出来单独考虑,同时定义一些数的顺序排列为单调块( ...

  2. 洛谷 P4609: [FJOI2016] 建筑师

    本省省选题是需要做的. 题目传送门:洛谷P4609. 题意简述: 求有多少个 \(1\) 到 \(N\) 的排列,满足比之前的所有数都大的数正好有 \(A\) 个,比之后的所有数都大的数正好有 \(B ...

  3. 洛谷P4609 [FJOI2016]建筑师 【第一类斯特林数】

    题目链接 洛谷P4609 题解 感性理解一下: 一神带\(n\)坑 所以我们只需将除了\(n\)外的\(n - 1\)个元素分成\(A + B - 2\)个集合,每个集合选出最大的在一端,剩余进行排列 ...

  4. [洛谷P4609] [FJOI2016]建筑师

    洛谷题目链接:[FJOI2016]建筑师 题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 \(n\) 个建筑,每个建筑的高度是 \(1\) 到 \(n\) 之间的一 ...

  5. P4609 [FJOI2016]建筑师

    思路 裸的第一类斯特林数,思路和CF960G相同 预处理组合数和第一类斯特林数回答即可 代码 #include <cstdio> #include <cstring> #inc ...

  6. 洛谷P4609 [FJOI2016]建筑师(第一类斯特林数+组合数)

    题面 洛谷 题解 (图片来源于网络,侵删) 以最高的柱子\(n\)为分界线,我们将左边的一个柱子和它右边的省略号看作一个圆排列,右边的一个柱子和它左边的省略号看作一个圆排列,于是,除了中间的最高的柱子 ...

  7. P4609 [FJOI2016]建筑师(第一类斯特林数)

    传送门 没想到连黑题都会有双倍经验的 其实这题本质上是和CF960G Bandit Blues一样的,不过那里是要用分治FFT预处理第一类斯特林数,这里直接打表预处理第一类斯特林数就可以了 //min ...

  8. LUOGU P4609 [FJOI2016]建筑师(第一类斯特林数)

    传送门 解题思路 好神仙的思路,首先一种排列中按照最高点将左右分开,那么就是要在左边选出\(a-1\)个,右边选出\(b-1\)一个,这个如何计算呢?考虑第一类斯特林数,第一类斯特林数是将\(n\)个 ...

  9. [FJOI2016]建筑师

    题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 n 个建筑,每个建筑的高度是 1 到 n 之间的一个整数. 小 Z 有很严重的强迫症,他不喜欢有两个建筑的高度相同. ...

随机推荐

  1. 用Spark进行实时流计算

    Spark Streaming VS Structured Streaming Spark Streaming是Spark最初的流处理框架,使用了微批的形式来进行流处理. 提供了基于RDDs的Dstr ...

  2. UI自动化填写问卷(selenium)+定时任务(懒人必备)

    1.自动填报 UI自动化 selenium 开发程序动机:天天有人催着填写问卷,弄的头大.主要还是懒的每天一个个去填写内容. 开发总时长:2个小时:学习+开发+修改 遇到的小问题: 在自动化填写地图的 ...

  3. Vue 引用图片的三种方式

    首先给图片地址绑定变量 <template> <img :src="imgUrl"> </template> 在script中设置变量 < ...

  4. C#/.Net集成RabbitMQ

    RabbitMQ简介 消息 (Message) 是指在应用间传送的数据.消息可以非常简单,比如只包含文本字符串. JSON 等,也可以很复杂,比如内嵌对象. 消息队列中间件 (Message Queu ...

  5. 计算vtable的大小

    在ClassFileParser::parseClassFile()函数中会计算vtable和itable所需要的大小,因为vtable和itable是内嵌在Klass中的,parseClassFil ...

  6. 02 Arduino-基于串口的学习

    1串口通讯的基本理论知识,想必大家都熟悉,这里就不过多的介绍,这里主要花时间来介绍串口的应用 2参考内容如下所示: 3串口通讯所涉及到的函数分析 A  if (Serial)   如果串口已经准备好了 ...

  7. 如何通过命令行简单的执行C程序

    如何通过命令行简单的执行C语言编写的程序 ​ 首先,我们知道C语言程序都是以xxx.c结尾的,这在Windows系统和Linux系统都是一样的.其次,C程序的执行过程为四步:预处理--编译--汇编-- ...

  8. python对端口进行扫描

    使用cocket模块配合多线程对端口进行扫描,后续功能正在思考ing. import socket from multiprocessing.dummy import Pool as ThreadPo ...

  9. Android Studio && GitHub 团队多人一起开发

    曾几何时,花了两天的时间搞了合并项目,搞得乱七八糟der,但最终还是被我搞定了,too 乱 to 做笔记.过了几个月,也就是前几天,抱着从头开始的决心,再次尝试,然鹅并没有结果.今天,再一次重新开始, ...

  10. Springboot + Rabbitmq + WebSocet + vue

    1.pom.xml <dependency> <groupId>org.springframework.boot</groupId> <artifactId& ...