P4609 建筑师
题目描述
小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 n 个建筑,每个建筑的高度是 1 到 n 之间的一个整数。
小 Z 有很严重的强迫症,他不喜欢有两个建筑的高度相同。另外小 Z 觉得如果从最左边(所有建筑都在右边)看能看到 A 个建筑,从最右边(所有建筑都在左边)看能看到 B 个建筑,这样的建筑群有着独特的美感。现在,小 Z 想知道满足上述所有条件的建筑方案有多少种?
如果建筑 i 的左(右)边没有任何建造比它高,则建筑 i 可以从左(右)边看到。两种方案不同,当且仅当存在某个建筑在两种方案下的高度不同。
输入格式
第一行一个整数 T,代表 T 组数据。 接下来 T 行,每行三个整数 n,A,B。
输出格式
对于每组数据输出一行答案 mod 1e9+7。
输入输出样例
输入 #1
2
3 2 2
3 1 2
输出 #1
2
1
说明/提示
对于 100% 的数据 :1≤n≤50000, 1≤A,B≤100, 1≤T≤2000001。
这也出到我考试题里了,看到后一脸懵,题都没看懂(因为是简化题面),爆0了(我吐了)
这道题正解是组合数\(+\)第一类斯特林数。
我们如果要有A个前缀最大值,B个后缀最大值,我们可以把\(n\)个数分为\(A + B - 1\)段:高度为\(n\)的为一段,其余的是一个高的挡住一群矮的为一段,大概是这样的:
那么问题可以转化为:将\(n - 1\)个数分为\(A + B - 2\)段,并且每一段不能为空,这不就是第一类斯特林数吗?
最后再考虑每一段在最高的那段左边还是右边就好了,最高的那段左边应该有\(A - 1\)段,右边应该有\(B - 1\)段,所以再乘上个\(C_{A +B - 2} ^ {A - 1}\)就好了。
#include <iostream>
#include <cstdio>
#include <cctype>
using namespace std;
inline long long read() {
long long s = 0, f = 1; char ch;
while(!isdigit(ch = getchar())) (ch == '-') && (f = -f);
for(s = ch ^ 48;isdigit(ch = getchar()); s = (s << 1) + (s << 3) + (ch ^ 48));
return s * f;
}
const int N = 3005, M = 3005, mod = 998244353;
int n, a, b;
int jc[N], inv[N], c[M][M], s[N][M];
void make_C() {
jc[0] = jc[1] = inv[0] = inv[1] = 1;
for(int i = 2;i <= M - 5; i++) jc[i] = 1ll * jc[i - 1] * i % mod;
for(int i = 2;i <= M - 5; i++) inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
for(int i = 2;i <= M - 5; i++) inv[i] = 1ll * inv[i - 1] * inv[i] % mod;
for(int i = 0;i <= M - 5; i++) c[i][0] = 1;
for(int i = 1;i <= M - 5; i++) {
for(int j = 1;j <= M - 5; j++) {
if(i >= j) c[i][j] = 1ll * jc[i] * inv[j] % mod * inv[i - j] % mod;
}
}
s[0][0] = s[1][1] = 1;
for(int i = 2;i <= N - 5; i++) s[i][1] = 1ll * s[i - 1][1] * (i - 1) % mod;
for(int i = 2;i <= N - 5; i++) {
for(int j = 2;j <= M - 5; j++) {
if(i >= j) s[i][j] = (s[i - 1][j - 1] + 1ll * s[i - 1][j] * (i - 1) % mod) % mod;
}
}
}
void init() {
scanf("%d %d %d", &n, &a, &b);
}
void work() {
printf("%lld\n", 1ll * s[n - 1][a + b - 2] * c[a + b - 2][a - 1] % mod);
}
int main() {
// freopen("onesentence.in","r",stdin); freopen("onesentence.out","w",stdout);
make_C();
init(); work();
// fclose(stdin); fclose(stdout);
return 0;
}
P4609 建筑师的更多相关文章
- Luogu P4609 [FJOI2016]建筑师&&CF 960G Bandit Blues
考虑转化题意,我们发现其实就是找一个长度为\(n\)的全排列,使得这个排列有\(A\)个前缀最大值,\(B\)个后缀最大值,求方案数 我们考虑把最大值拎出来单独考虑,同时定义一些数的顺序排列为单调块( ...
- 洛谷 P4609: [FJOI2016] 建筑师
本省省选题是需要做的. 题目传送门:洛谷P4609. 题意简述: 求有多少个 \(1\) 到 \(N\) 的排列,满足比之前的所有数都大的数正好有 \(A\) 个,比之后的所有数都大的数正好有 \(B ...
- 洛谷P4609 [FJOI2016]建筑师 【第一类斯特林数】
题目链接 洛谷P4609 题解 感性理解一下: 一神带\(n\)坑 所以我们只需将除了\(n\)外的\(n - 1\)个元素分成\(A + B - 2\)个集合,每个集合选出最大的在一端,剩余进行排列 ...
- [洛谷P4609] [FJOI2016]建筑师
洛谷题目链接:[FJOI2016]建筑师 题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 \(n\) 个建筑,每个建筑的高度是 \(1\) 到 \(n\) 之间的一 ...
- P4609 [FJOI2016]建筑师
思路 裸的第一类斯特林数,思路和CF960G相同 预处理组合数和第一类斯特林数回答即可 代码 #include <cstdio> #include <cstring> #inc ...
- 洛谷P4609 [FJOI2016]建筑师(第一类斯特林数+组合数)
题面 洛谷 题解 (图片来源于网络,侵删) 以最高的柱子\(n\)为分界线,我们将左边的一个柱子和它右边的省略号看作一个圆排列,右边的一个柱子和它左边的省略号看作一个圆排列,于是,除了中间的最高的柱子 ...
- P4609 [FJOI2016]建筑师(第一类斯特林数)
传送门 没想到连黑题都会有双倍经验的 其实这题本质上是和CF960G Bandit Blues一样的,不过那里是要用分治FFT预处理第一类斯特林数,这里直接打表预处理第一类斯特林数就可以了 //min ...
- LUOGU P4609 [FJOI2016]建筑师(第一类斯特林数)
传送门 解题思路 好神仙的思路,首先一种排列中按照最高点将左右分开,那么就是要在左边选出\(a-1\)个,右边选出\(b-1\)一个,这个如何计算呢?考虑第一类斯特林数,第一类斯特林数是将\(n\)个 ...
- [FJOI2016]建筑师
题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 n 个建筑,每个建筑的高度是 1 到 n 之间的一个整数. 小 Z 有很严重的强迫症,他不喜欢有两个建筑的高度相同. ...
随机推荐
- 一文学会MySQL的explain工具
开篇说明 (1) 本文将细致介绍MySQL的explain工具,是下一篇<一文读懂MySQL的索引机制及查询优化>的准备篇. (2) 本文主要基于MySQL5.7版本(https://de ...
- C语言输出颜色
命令后界面输出颜色 嵌入式终端界面输出日志时,为了区分输出的有用信息.错误信息,可以给不同级别的输出加上不同的颜色,以方便查看. 下面是颜色的定义: //颜色宏定义 #define NONE &quo ...
- Nexus3 上传的文件在哪里
上传文件 ojdbc7.jar,上传步骤略. 服务器上默认的文件存放路径是: nexus/sonatype-work/nexus3/blobs/default/content/ 一堆文件夹,根据时间确 ...
- linux常用命令(一)软件操作命令
软件包管理器:yum 安装软件:yum install xxx 卸载软件:yum remove xxx 搜索软件:yum search xxx 清理缓存:yum clean packages 列出已安 ...
- 思维导图概览SpringCloud
@ 目录 1.什么是微服务 1.1.架构演进 1.2.微服务架构 1.3.微服务解决方案 2.SpringCloud概览 2.1.什么是SpringCloud 2.1.SpringCloud主要组件 ...
- 将本地项目推送到远程gitee仓库(通过git命令)
只有经历过地狱般的磨砺,才能练就创造天堂的力量: 只有流过血的手指,才能弹出世间的绝响 将本地的项目推送到远程gitee仓库 本地新建的Java项目,想推送到远程gitee仓库或者git仓库,你需要两 ...
- 图论算法(三) 最短路SPFA算法
我可能要退役了…… 退役之前,写一篇和我一样悲惨的算法:SPFA 最短路算法(二)SPFA算法 Part 1:SPFA算法是什么 其实呢,SPFA算法只是在天朝大陆OIers的称呼,它的正统名字叫做: ...
- 在不影响程序使用的情况下添加shellcode
参考 在文章Backdooring PE Files with Shellcode中介绍了一种在正常程序中注入shellcode的方式,让程序以前的逻辑照常能够正常运行,下面复现一下并解决几个小问题. ...
- 【API进阶之路】逆袭!用关键词抽取API搞定用户需求洞察
摘要: 老大说,我这份用关键词抽取API搞定的用户需求洞察报告,简直比比市场调研的科班人士做得还好. 最近这半个月的午饭,那可是相当不错,市场老大天天请吃饭,不是外面下馆子,就是从家带饺子.说是感谢我 ...
- AWS 学习笔记之 VPC
原文:https://ericfu.me/aws-notes-vpc/ VPC 把 VPC 想象成一个逻辑上的数据中心 包含一个 IGW (Internet Gateway)或者 Virtual Pr ...