[PyTorch 学习笔记] 1.2 Tensor(张量)介绍
本章代码:
Tensor 的概念
Tensor 中文为张量。张量的意思是一个多维数组,它是标量、向量、矩阵的高维扩展。
标量可以称为 0 维张量,向量可以称为 1 维张量,矩阵可以称为 2 维张量,RGB 图像可以表示 3 维张量。你可以把张量看作多维数组。
Tensor 与 Variable
在 PyTorch 0.4.0 之前,torch.autograd 包中存在 Variable 这种数据类型,主要是用于封装 Tensor,进行自动求导。Variable 主要包含下面几种属性。
- data: 被包装的 Tensor。
- grad: data 的梯度。
- grad_fn: 创建 Tensor 所使用的 Function,是自动求导的关键,因为根据所记录的函数才能计算出导数。
- requires_grad: 指示是否需要梯度,并不是所有的张量都需要计算梯度。
- is_leaf: 指示是否叶子节点(张量),叶子节点的概念在计算图中会用到,后面详细介绍。
在 PyTorch 0.4.0 之后,Variable 并入了 Tensor。在之后版本的 Tensor 中,除了具有上面 Variable 的 5 个属性,还有另外 3 个属性。
- dtype: 张量的数据类型,如 torch.FloatTensor,torch.cuda.FloatTensor。
- shape: 张量的形状。如 (64, 3, 224, 224)
- device: 张量所在设备 (CPU/GPU),GPU 是加速计算的关键
关于 dtype,PyTorch 提供了 9 种数据类型,共分为 3 大类:float (16-bit, 32-bit, 64-bit)、integer (unsigned-8-bit ,8-bit, 16-bit, 32-bit, 64-bit)、Boolean。模型参数和数据用的最多的类型是 float-32-bit。label 常用的类型是 integer-64-bit。
Tensor 创建的方法
直接创建 Tensor
torch.tensor()
torch.tensor(data, dtype=None, device=None, requires_grad=False, pin_memory=False)
- data: 数据,可以是 list,numpy
- dtype: 数据类型,默认与 data 的一致
- device: 所在设备,cuda/cpu
- requires_grad: 是否需要梯度
- pin_memory: 是否存于锁页内存
代码示例:
arr = np.ones((3, 3))
print("ndarray的数据类型:", arr.dtype)
# 创建存放在 GPU 的数据
# t = torch.tensor(arr, device='cuda')
t= torch.tensor(arr)
print(t)
输出为:
ndarray的数据类型: float64
tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]], dtype=torch.float64)
torch.from_numpy(ndarray)
从 numpy 创建 tensor。利用这个方法创建的 tensor 和原来的 ndarray 共享内存,当修改其中一个数据,另外一个也会被改动。
代码示例:
arr = np.array([[1, 2, 3], [4, 5, 6]])
t = torch.from_numpy(arr)
# 修改 array,tensor 也会被修改
# print("\n修改arr")
# arr[0, 0] = 0
# print("numpy array: ", arr)
# print("tensor : ", t)
# 修改 tensor,array 也会被修改
print("\n修改tensor")
t[0, 0] = -1
print("numpy array: ", arr)
print("tensor : ", t)
输出为:
修改tensor
numpy array: [[-1 2 3]
[ 4 5 6]]
tensor : tensor([[-1, 2, 3],
[ 4, 5, 6]], dtype=torch.int32)
根据数值创建 Tensor
torch.zeros()
torch.zeros(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
功能:根据 size 创建全 0 张量
- size: 张量的形状
- out: 输出的张量,如果指定了 out,那么
torch.zeros()
返回的张量和 out 指向的是同一个地址 - layout: 内存中布局形式,有 strided,sparse_coo 等。当是稀疏矩阵时,设置为 sparse_coo 可以减少内存占用。
- device: 所在设备,cuda/cpu
- requires_grad: 是否需要梯度
代码示例:
out_t = torch.tensor([1])
# 这里制定了 out
t = torch.zeros((3, 3), out=out_t)
print(t, '\n', out_t)
# id 是取内存地址。最终 t 和 out_t 是同一个内存地址
print(id(t), id(out_t), id(t) == id(out_t))
输出是:
tensor([[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])
tensor([[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])
2984903203072 2984903203072 True
torch.zeros_like
torch.zeros_like(input, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format)
功能:根据 input 形状创建全 0 张量
- input: 创建与 input 同形状的全 0 张量
- dtype: 数据类型
- layout: 内存中布局形式,有 strided,sparse_coo 等。当是稀疏矩阵时,设置为 sparse_coo 可以减少内存占用。
同理还有全 1 张量的创建方法:torch.ones()
,torch.ones_like()
。
torch.full(),torch.full_like()
torch.full(size, fill_value, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
功能:创建自定义数值的张量
- size: 张量的形状,如 (3,3)
- fill_value: 张量中每一个元素的值
代码示例:
t = torch.full((3, 3), 1)
print(t)
输出为:
tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])
torch.arange()
torch.arange(start=0, end, step=1, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
功能:创建等差的 1 维张量。注意区间为[start, end)。
- start: 数列起始值
- end: 数列结束值,开区间,取不到结束值
- step: 数列公差,默认为 1
代码示例:
t = torch.arange(2, 10, 2)
print(t)
输出为:
tensor([2, 4, 6, 8])
torch.linspace()
torch.linspace(start, end, steps=100, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
功能:创建均分的 1 维张量。数值区间为 [start, end]
- start: 数列起始值
- end: 数列结束值
- steps: 数列长度 (元素个数)
代码示例:
# t = torch.linspace(2, 10, 5)
t = torch.linspace(2, 10, 6)
print(t)
输出为:
tensor([ 2.0000, 3.6000, 5.2000, 6.8000, 8.4000, 10.0000])
torch.logspace()
torch.logspace(start, end, steps=100, base=10.0, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
功能:创建对数均分的 1 维张量。数值区间为 [start, end],底为 base。
- start: 数列起始值
- end: 数列结束值
- steps: 数列长度 (元素个数)
- base: 对数函数的底,默认为 10
代码示例:
# t = torch.linspace(2, 10, 5)
t = torch.linspace(2, 10, 6)
print(t)
输出为:
tensor([ 2.0000, 3.6000, 5.2000, 6.8000, 8.4000, 10.0000])
torch.eye()
torch.eye(n, m=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
功能:创建单位对角矩阵( 2 维张量),默认为方阵
- n: 矩阵行数。通常只设置 n,为方阵。
- m: 矩阵列数
根据概率创建 Tensor
torch.normal()
torch.normal(mean, std, *, generator=None, out=None)
功能:生成正态分布 (高斯分布)
- mean: 均值
- std: 标准差
有 4 种模式:
mean 为标量,std 为标量。这时需要设置 size。
代码示例:
# mean:标量 std: 标量
# 这里需要设置 size
t_normal = torch.normal(0., 1., size=(4,))
print(t_normal)输出为:
tensor([0.6614, 0.2669, 0.0617, 0.6213])
mean 为标量,std 为张量
mean 为张量,std 为标量
代码示例:
# mean:张量 std: 标量
mean = torch.arange(1, 5, dtype=torch.float)
std = 1
t_normal = torch.normal(mean, std)
print("mean:{}\nstd:{}".format(mean, std))
print(t_normal)输出为:
mean:tensor([1., 2., 3., 4.])
std:1
tensor([1.6614, 2.2669, 3.0617, 4.6213])这 4 个数采样分布的均值不同,但是方差都是 1。
mean 为张量,std 为张量
代码示例:
# mean:张量 std: 张量
mean = torch.arange(1, 5, dtype=torch.float)
std = torch.arange(1, 5, dtype=torch.float)
t_normal = torch.normal(mean, std)
print("mean:{}\nstd:{}".format(mean, std))
print(t_normal)输出为:
mean:tensor([1., 2., 3., 4.])
std:tensor([1., 2., 3., 4.])
tensor([1.6614, 2.5338, 3.1850, 6.4853])其中 1.6614 是从正态分布 $N(1,1)$ 中采样得到的,其他数字以此类推。
torch.randn() 和 torch.randn_like()
torch.randn(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
功能:生成标准正态分布。
- size: 张量的形状
torch.rand() 和 torch.rand_like()
torch.rand(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
功能:在区间 [0, 1) 上生成均匀分布。
torch.randint() 和 torch.randint_like()
randint(low=0, high, size, *, generator=None, out=None,
dtype=None, layout=torch.strided, device=None, requires_grad=False)
功能:在区间 [low, high) 上生成整数均匀分布。
- size: 张量的形状
torch.randperm()
torch.randperm(n, out=None, dtype=torch.int64, layout=torch.strided, device=None, requires_grad=False)
功能:生成从 0 到 n-1 的随机排列。常用于生成索引。
- n: 张量的长度
torch.bernoulli()
torch.bernoulli(input, *, generator=None, out=None)
功能:以 input 为概率,生成伯努利分布 (0-1 分布,两点分布)
- input: 概率值
参考资料
如果你觉得这篇文章对你有帮助,不妨点个赞,让我有更多动力写出好文章。
我的文章会首发在公众号上,欢迎扫码关注我的公众号张贤同学。
[PyTorch 学习笔记] 1.2 Tensor(张量)介绍的更多相关文章
- 【转】Pandas学习笔记(一)基本介绍
Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...
- NGUI学习笔记(一)UILabel介绍
来个前言: 作为一个U3D程序员,自然要写一写U3D相关的内容了.想来想去还是从UI开始搞起,可能这也是最直观同时也最重要的部分之一了.U3D自带的UI系统,也许略坑,也没有太多介绍的价值,那么从今天 ...
- Android自动化学习笔记之MonkeyRunner:官方介绍和简单实例
---------------------------------------------------------------------------------------------------- ...
- 【JAVAWEB学习笔记】07_BootStrap、Viewport介绍
今天主要学习了BootStrap,viewport的介绍和最后对网站进行了重构 今天晨读单词: Compatible:兼容性 viewport:视口 device:设备 initial:初始化(缩写i ...
- [PyTorch 学习笔记] 1.3 张量操作与线性回归
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson1/linear_regression.py 张量的操作 拼 ...
- 【pytorch】学习笔记(一)-张量
pytorch入门 什么是pytorch PyTorch 是一个基于 Python 的科学计算包,主要定位两类人群: NumPy 的替代品,可以利用 GPU 的性能进行计算. 深度学习研究平台拥有足够 ...
- Pytorch学习笔记(二)——Tensor
一.对Tensor的操作 从接口的角度讲,对Tensor的操作可以分为两类: (1)torch.function (2)tensor.function 比如torch.sum(a, b)实际上和a.s ...
- pytorch学习笔记(九):PyTorch结构介绍
PyTorch结构介绍对PyTorch架构的粗浅理解,不能保证完全正确,但是希望可以从更高层次上对PyTorch上有个整体把握.水平有限,如有错误,欢迎指错,谢谢! 几个重要的类型和数值相关的Tens ...
- [PyTorch 学习笔记] 5.1 TensorBoard 介绍
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson5/tensorboard_methods.py http ...
随机推荐
- Oracle可视化工具连接
Oracle可是化工具有很多,以下只列举sql developer和sql plus这两款连接方式 sql developer: SQL Develope启动后,需要创建一个数据库连接,只有创建了数据 ...
- Cordova iPhone 刘海屏 和 安卓瀑布屏 等异形屏幕的适配处理
1. 在cordova项目的config.xml中指定StatusBarOverlaysWebView(需要cordova-plugin-statusbar插件支持),表示应用界面是否覆盖状态栏(系 ...
- python爬虫入门(2)----- lxml
lxml 简介 lxml使用xpath对xml进行解析,XPath 是一门在 XML 文档中查找信息的语言.XPath 可用来在 XML 文档中对元素和属性进行遍历. 参考官方文档:https://l ...
- MySQL主从分离实现
前言 大型网站为了减轻服务器处理海量的并发访问,所产生的性能问题,采用了很多解决方案,其中最主流的解决方案就是读写分离,即将读操作和写操作分别导流到不同的服务器集群执行,到了数据业务层,数据访问层 ...
- 跟老刘学运维day02~部署虚拟环境安装Linux系统(1)
第1章 部署虚拟环境安装Linux系统 所谓“工欲善其事,必先利其器” 1.准备工具 VmwareWorkStation 15.5——虚拟机软件(必需) RedHatEnterpriseLinux ...
- lua中单引号和双引号和/的输出的问题
lua单引号和双引号的问题 lua 中的 单引号 与 双引号 (" " 与 '') Lua除支持双引号("")表示字符串外, 也支持用单引号('') 注意: 如 ...
- C# 13位时间戳(unix时间戳)
1.转义字符用在中间. "\"' 2.C#获取13位时间戳(unix时间戳) /// <summary> /// 将c# DateTime时间格式转换为Unix时间 ...
- Python常用标准库之datetime、random、hashlib、itertools
库:具有相关功能模块的集合 import sys.builtin_module_names #返回内建模块的名字modules 查看所有可用模块的名字 1.1.1获取当前日期和时间 from date ...
- PHP array_reverse() 函数
实例 返回翻转顺序的数组: <?php $a=array("a"=>"Volvo","b"=>"BMW" ...
- day18.os模块 对系统进行操作
一.os操作 1.system()在python中执行系统命令 # os.system("ifconfig") # os.system("touch 1.txt" ...