BF,BM,KMP,就这?
为保证代码严谨性,文中所有代码均在 leetcode 刷题网站 AC ,大家可以放心食用。
皇上生辰之际,举国同庆,袁记菜馆作为天下第一饭店,所以被选为这次庆典的菜品供应方,这次庆典对于袁记菜馆是一项前所未有的挑战,毕竟是第一次给皇上庆祝生辰,稍有不慎就是掉脑袋的大罪,整个袁记菜馆内都在紧张的布置着。此时突然有一个店小二慌慌张张跑到袁厨面前汇报,到底发生了什么事,让店小二如此慌张呢?
袁记菜馆内
店小二:不好了不好了,掌柜的,出大事了。
袁厨:发生什么事了,慢慢说,如此慌张,成何体统。(开店开久了,架子出来了哈)
店小二:皇上按照咱们菜单点了 666 道菜,但是咱们做西湖醋鱼的师傅请假回家结婚了,不知道皇上有没有点这道菜,如果点了这道菜,咱们做不出来,那咱们店可就完了啊。
(袁厨听了之后,吓得一屁股坐地上了,缓了半天说道)
袁厨:别说那么多了,快给我找找皇上点的菜里面,有没有这道菜!
找了很久,并且核对了很多遍,最后确认皇上没有点这道菜。菜馆内的人都松了一口气
通过上面的一个例子,让我们简单了解了字符串匹配。
字符串匹配:设 S 和 T 是给定的两个串,在主串 S 中找到模式串 T 的过程称为字符串匹配,如果在主串 S 中找到 模式串 T ,则称匹配成功,函数返回 T 在 S 中首次出现的位置,否则匹配不成功,返回 -1。
例:
在上图中,我们试图找到模式 T = baab,在主串 S = abcabaabcabac 中第一次出现的位置,即为红色阴影部分, T 第一次在 S 中出现的位置下标为 4 ( 字符串的首位下标是 0 ),所以返回 4。如果模式串 T 没有在主串 S 中出现,则返回 -1。
解决上面问题的算法我们称之为字符串匹配算法,今天我们来介绍三种字符串匹配算法,大家记得打卡呀,说不准面试的时候就问到啦。
BF算法(Brute Force)
这个算法很容易理解,就是我们将模式串和主串进行比较,一致时则继续比较下一字符,直到比较完整个模式串。不一致时则将模式串后移一位,重新从模式串的首位开始对比,重复刚才的步骤下面我们看下这个方法的动图解析,看完肯定一下就能搞懂啦。
因为不
通过上面的代码是不是一下就将这个算法搞懂啦,下面我们用这个算法来解决下面这个经典题目吧。
leetcdoe 28. 实现 strStr()
题目描述
给定一个 haystack 字符串和一个 needle 字符串,在 haystack 字符串中找出 needle 字符串出现的第一个位置 (从0开始)。如果不存在,则返回 -1。
示例 1:
输入: haystack = "hello", needle = "ll"
输出: 2
示例 2:
输入: haystack = "aaaaa", needle = "bba"
输出: -1
题目解析
其实这个题目很容易理解,但是我们需要注意的是一下几点,比如我们的模式串为 0 时,应该返回什么,我们的模式串长度大于主串长度时,应该返回什么,也是我们需要注意的地方。下面我们来看一下题目代码吧。
题目代码
class Solution {
public int strStr(String haystack, String needle) {
int haylen = haystack.length();
int needlen = needle.length();
//特殊情况
if (haylen < needlen) {
return -1;
}
if (needlen == 0) {
return 0;
}
//主串
for (int i = 0; i < haylen - needlen + 1; ++i) {
int j;
//模式串
for (j = 0; j < needlen; j++) {
//不符合的情况,直接跳出,主串指针后移一位
if (haystack.charAt(i+j) != needle.charAt(j)) {
break;
}
}
//匹配成功
if (j == needlen) {
return i;
}
}
return -1;
}
}
我们看一下BF算法的另一种算法(显示回退),其实原理一样,就是对代码进行了一下修改,只要是看完咱们的动图,这个也能够一下就能看懂,大家可以结合下面代码中的注释和动图进行理解。
class Solution {
public int strStr(String haystack, String needle) {
//i代表主串指针,j模式串
int i,j;
//主串长度和模式串长度
int halen = haystack.length();
int nelen = needle.length();
//循环条件,这里只有 i 增长
for (i = 0 , j = 0; i < halen && j < nelen; ++i) {
//相同时,则移动 j 指针
if (haystack.charAt(i) == needle.charAt(j)) {
++j;
} else {
//不匹配时,将 j 重新指向模式串的头部,将 i 本次匹配的开始位置的下一字符
i -= j;
j = 0;
}
}
//查询成功时返回索引,查询失败时返回 -1;
int renum = j == nelen ? i - nelen : -1;
return renum;
}
}
BM算法(Boyer-Moore)
我们刚才说过了 BF 算法,但是 BF 算法是有缺陷的,比如我们下面这种情况
如上图所示,如果我们利用 BF 算法,遇到不匹配字符时,每次右移一位模式串,再重新从头进行匹配,我们观察一下,我们的模式串 abcdex 中每个字符都不一样,但是我们第一次进行字符串匹配时,abcde 都匹配成功,到 x 时失败,又因为模式串每位都不相同,所以我们不需要再每次右移一位,再重新比较,我们可以直接跳过某些步骤。如下图
我们可以跳过其中某些步骤,直接到下面这个步骤。那我们是依据什么原则呢?
坏字符规则
我们之前的 BF 算法是从前往后进行比较 ,BM 算法是从后往前进行比较,我们来看一下具体过程,我们还是利用上面的例子。
BM 算法是从后往前进行比较,此时我们发现比较的第一个字符就不匹配,我们将主串这个字符称之为坏字符,也就是 f ,我们发现坏字符之后,模式串 T 中查找是否含有该字符(f),我们发现并不存在 f,此时我们只需将模式串右移到坏字符的后面一位即可。如下图
那我们在模式串中找到坏字符该怎么办呢?
此时我们的坏字符为 f ,我们在模式串中,查找发现含有坏字符 f,我们则需要移动模式串 T ,将模式串中的 f 和坏字符对齐。见下图。
然后我们继续从右往左进行比较,发现 d 为坏字符,则需要将模式串中的 d 和坏字符对齐。
那么我们在来思考一下这种情况,那就是模式串中含有多个坏字符怎么办呢?
那么我们为什么要让最靠右的对应元素与坏字符匹配呢?如果上面的例子我们没有按照这条规则看下会产生什么问题。
如果没有按照我们上述规则,则会漏掉我们的真正匹配。我们的主串中是含有 babac 的,但是却没有匹配成功,所以应该遵守最靠右的对应字符与坏字符相对的规则。
我们上面一共介绍了三种移动情况,分别是下方的模式串中没有发现与坏字符对应的字符,发现一个对应字符,发现两个。这三种情况我们分别移动不同的位数,那我们是根据依据什么来决定移动位数的呢?下面我们给图中的字符加上下标。见下图
下面我们来考虑一下这种情况。
此时这种情况肯定是不行的,不往右移动,甚至还有可能左移,那么我们有没有什么办法解决这个问题呢?继续往下看吧。
好后缀规则
好后缀其实也很容易理解,我们之前说过 BM 算法是从右往左进行比较,下面我们来看下面这个例子。
这里如果我们按照坏字符进行移动是不合理的,这时我们可以使用好后缀规则,那么什么是好后缀呢?
BM 算法是从右往左进行比较,发现坏字符的时候此时 cac 已经匹配成功,在红色阴影处发现坏字符。此时已经匹配成功的 cac 则为我们的好后缀,此时我们拿它在模式串中查找,如果找到了另一个和好后缀相匹配的串,那我们就将另一个和好后缀相匹配的串 ,滑到和好后缀对齐的位置。
是不是感觉有点拗口,没关系,我们看下图,红色代表坏字符,绿色代表好后缀
上面那种情况搞懂了,但是我们思考一下下面这种情况
上面我们说到了,如果在模式串的头部没有发现好后缀,发现好后缀的子串也可以。但是为什么要强调这个头部呢?
我们下面来看一下这种情况
但是当我们在头部发现好后缀的子串时,是什么情况呢?
下面我们通过动图来看一下某一例子的具体的执行过程
视频
说到这里,坏字符和好后缀规则就算说完了,坏字符很容易理解,我们对好后缀总结一下
1.如果模式串含有好后缀,无论是中间还是头部可以按照规则进行移动。如果好后缀在模式串中出现多次,则以最右侧的好后缀为基准。
2.如果模式串头部含有好后缀子串则可以按照规则进行移动,中间部分含有好后缀子串则不可以。
3.如果在模式串尾部就出现不匹配的情况,即不存在好后缀时,则根据坏字符进行移动,这里有的文章没有提到,是个需要特别注意的地方,我是在这个论文里找到答案的,感兴趣的同学可以看下。
Boyer R S,Moore J S. A fast string searching algorithm[J]. Communications of the ACM,1977,10: 762-772.
之前我们刚开始说坏字符的时候,是不是有可能会出现负值的情况,即往左移动的情况,所以我们为了解决这个问题,我们可以分别计算好后缀和坏字符往后滑动的位数(好后缀不为 0 的情况),然后取两个数中最大的,作为模式串往后滑动的位数。
这破图画起来是真费劲啊。下面我们来看一下算法代码,代码有点长,我都标上了注释也在网站上 AC 了,如果各位感兴趣可以看一下,不感兴趣理解坏字符和好后缀规则即可。可以直接跳到 KMP 部分
class Solution {
public int strStr(String haystack, String needle) {
char[] hay = haystack.toCharArray();
char[] need = needle.toCharArray();
int haylen = haystack.length();
int needlen = need.length;
return bm(hay,haylen,need,needlen);
}
//用来求坏字符情况下移动位数
private static void badChar(char[] b, int m, int[] bc) {
//初始化
for (int i = 0; i < 256; ++i) {
bc[i] = -1;
}
//m 代表模式串的长度,如果有两个 a,则后面那个会覆盖前面那个
for (int i = 0; i < m; ++i) {
int ascii = (int)b[i];
bc[ascii] = i;//下标
}
}
//用来求好后缀条件下的移动位数
private static void goodSuffix (char[] b, int m, int[] suffix,boolean[] prefix) {
//初始化
for (int i = 0; i < m; ++i) {
suffix[i] = -1;
prefix[i] = false;
}
for (int i = 0; i < m - 1; ++i) {
int j = i;
int k = 0;
while (j >= 0 && b[j] == b[m-1-k]) {
--j;
++k;
suffix[k] = j + 1;
}
if (j == -1) prefix[k] = true;
}
}
public static int bm (char[] a, int n, char[] b, int m) {
int[] bc = new int[256];//创建一个数组用来保存最右边字符的下标
badChar(b,m,bc);
//用来保存各种长度好后缀的最右位置的数组
int[] suffix_index = new int[m];
//判断是否是头部,如果是头部则true
boolean[] ispre = new boolean[m];
goodSuffix(b,m,suffix_index,ispre);
int i = 0;//第一个匹配字符
//注意结束条件
while (i <= n-m) {
int j;
//从后往前匹配,匹配失败,找到坏字符
for (j = m - 1; j >= 0; --j) {
if (a[i+j] != b[j]) break;
}
//模式串遍历完毕,匹配成功
if (j < 0) {
return i;
}
//下面为匹配失败时,如何处理
//求出坏字符规则下移动的位数,就是我们坏字符下标减最右边的下标
int x = j - bc[(int)a[i+j]];
int y = 0;
//好后缀情况,求出好后缀情况下的移动位数,如果不含有好后缀的话,则按照坏字符来
if (y < m-1 && m - 1 - j > 0) {
y = move(j, m, suffix_index,ispre);
}
//移动
i = i + Math.max(x,y);
}
return -1;
}
// j代表坏字符的下标
private static int move (int j, int m, int[] suffix_index, boolean[] ispre) {
//好后缀长度
int k = m - 1 - j;
//如果含有长度为 k 的好后缀,返回移动位数,
if (suffix_index[k] != -1) return j - suffix_index[k] + 1;
//找头部为好后缀子串的最大长度,从长度最大的子串开始
for (int r = j + 2; r <= m-1; ++r) {
//如果是头部
if (ispre[m-r] == true) {
return r;
}
}
//如果没有发现好后缀匹配的串,或者头部为好后缀子串,则移动到 m 位,也就是匹配串的长度
return m;
}
}
我们来理解一下我们代码中用到的两个数组,因为两个规则的移动位数,只与模式串有关,与主串无关,所以我们可以提前求出每种情况的移动情况,保存到数组中。
KMP算法(Knuth-Morris-Pratt)
我们刚才讲了 BM 算法,虽然不是特别容易理解,但是如果你用心看的话肯定可以看懂的,我们再来看一个新的算法,这个算法是考研时必考的算法。实际上 BM 和 KMP 算法的本质是一样的,你理解了 BM 再来理解 KMP 那就是分分钟的事啦。
我们先来看一个实例
视频
为了让读者更容易理解,我们将指针移动改成了模式串移动,两者相对与主串的移动是一致的,重新比较时都是从指针位置继续比较。
通过上面的实例是不是很快就能理解 KMP 算法的思想了,但是 KMP 的难点不是在这里,不过多思考,认真看理解起来也是很轻松的。
在上面的例子中我们提到了一个名词,最长公共前后缀,这个是什么意思呢?下面我们通过一个较简单的例子进行描述。
此时我们在红色阴影处匹配失败,绿色为匹配成功部分,则我们观察匹配成功的部分。
我们来看一下匹配成功部分的所有前缀
我们的最长公共前后缀如下图,则我们需要这样移动
好啦,看完上面的图,KMP的核心原理已经基本搞定了,但是我们现在的问题是,我们应该怎么才能知道他的最长公共前后缀的长度是多少呢?怎么知道移动多少位呢?
刚才我们在 BM 中说到,我们移动位数跟主串无关,只跟模式串有关,跟我们的 bc,suffix,prefix 数组的值有关,我们通过这些数组就可以知道我们每次移动多少位啦,其实 KMP 也有一个数组,这个数组叫做 next 数组,那么这个 next 数组存的是什么呢?
next 数组存的咱们最长公共前后缀中,前缀的结尾字符下标。是不是感觉有点别扭,我们通过一个例子进行说明。
我们知道 next 数组之后,我们的 KMP 算法实现起来就很容易啦,另外我们看一下 next 数组到底是干什么用的。
剩下的就不用说啦,完全一致啦,咱们将上面这个例子,翻译成和咱们开头对应的动画大家看一下。
动画必上岸
下面我们看一下代码,标有详细注释,大家认真看呀。
注:很多教科书的 next 数组表示方式不一致,理解即可
class Solution {
public int strStr(String haystack, String needle) {
//两种特殊情况
if (needle.length() == 0) {
return 0;
}
if (haystack.length() == 0) {
return -1;
}
// char 数组
char[] hasyarr = haystack.toCharArray();
char[] nearr = needle.toCharArray();
//长度
int halen = hasyarr.length;
int nelen = nearr.length;
//返回下标
return kmp(hasyarr,halen,nearr,nelen);
}
public int kmp (char[] hasyarr, int halen, char[] nearr, int nelen) {
//获取next 数组
int[] next = next(nearr,nelen);
int j = 0;
for (int i = 0; i < halen; ++i) {
//发现不匹配的字符,然后根据 next 数组移动指针,移动到最大公共前后缀的,
//前缀的后一位,和咱们移动模式串的含义相同
while (j > 0 && hasyarr[i] != nearr[j]) {
j = next[j - 1] + 1;
//超出长度时,可以直接返回不存在
if (nelen - j + i > halen) {
return -1;
}
}
//如果相同就将指针同时后移一下,比较下个字符
if (hasyarr[i] == nearr[j]) {
++j;
}
//遍历完整个模式串,返回模式串的起点下标
if (j == nelen) {
return i - nelen + 1;
}
}
return -1;
}
//这一块比较难懂,不想看的同学可以忽略,了解大致含义即可,或者自己调试一下,看看运行情况
//我会每一步都写上注释
public int[] next (char[] needle,int len) {
//定义 next 数组
int[] next = new int[len];
// 初始化
next[0] = -1;
int k = -1;
for (int i = 1; i < len; ++i) {
//我们此时知道了 [0,i-1]的最长前后缀,但是k+1的指向的值和i不相同时,我们则需要回溯
//因为 next[k]就时用来记录子串的最长公共前后缀的尾坐标(即长度)
//就要找 k+1前一个元素在next数组里的值,即next[k+1]
while (k != -1 && needle[k + 1] != needle[i]) {
k = next[k];
}
// 相同情况,就是 k的下一位,和 i 相同时,此时我们已经知道 [0,i-1]的最长前后缀
//然后 k - 1 又和 i 相同,最长前后缀加1,即可
if (needle[k+1] == needle[i]) {
++k;
}
next[i] = k;
}
return next;
}
}
这篇文章真的写了很久很久,觉得还不错的话,就麻烦您点个赞吧,大家也可以去我的公众号看我的所有文章,每个都有动图解析,公众号:袁厨的算法小屋
BF,BM,KMP,就这?的更多相关文章
- BF、KMP、BM、Sunday算法讲解
BF.KMP.BM.Sunday算法讲解 字串的定位操作通常称作串的模式匹配,是各种串处理系统中最重要的操作之一. 事实上也就是从一个母串中查找一模板串,判定是否存在. 现给出四种匹配算法包括BF(即 ...
- 数据结构- 串的模式匹配算法:BF和 KMP算法
数据结构- 串的模式匹配算法:BF和 KMP算法 Brute-Force算法的思想 1.BF(Brute-Force)算法 Brute-Force算法的基本思想是: 1) 从目标串s 的第一个字 ...
- 字符串模式匹配算法--BF和KMP详解
1,问题描述 字符串模式匹配:串的模式匹配 ,是求第一个字符串(模式串:str2)在第二个字符串(主串:str1)中的起始位置. 注意区分: 子串:要求连续 (如:abc 是abcdef的子串) ...
- 字符串模式匹配算法1 - BF和KMP算法
在字符串S中定位/查找某个子字符串P的操作,通常称为字符串的模式匹配,其中P称为模式串.模式匹配有多种算法,这里先总结一下BF算法和KMP算法. 注意:本文在讨论字符位置/指针/下标时,全部使用C语法 ...
- BF、kmp算法
第七周 字符串匹配 BF算法,kmp算法 BF:时间复杂度为 O(m*n) int Index_BF(SString S, SString T, int pos) { ; while (i <= ...
- BF算法 + KMP算法
准备: 字符串比大小:比的就是字符串里每个字符的ASCII码的大小.(其实这样的比较没有多大的意义,我们关心的是字符串是否相等,即匹配等) 字符串的存储结构:同线性表(顺序存储+链式存储) 顺序存储结 ...
- 字符串匹配算法BF和KMP总结
背景 来看一道leetcode题目: Implement strStr(). Returns the index of the first occurrence of needle in haysta ...
- 串匹配算法讲解 -----BF、KMP算法
参考文章: http://www.matrix67.com/blog/archives/115 KMP算法详解 http://blog.csdn.net/yaochunnian/artic ...
- 字符串匹配算法 之BF、KMP
示例: 1. 已知字符串str1="acabaabaabcacaabc",求str2="abaabcac"是否在字符串str1中? 2. DNA病毒检测.已知患 ...
随机推荐
- 数论之prufer序列
定义 \(Prufer\) 数列是无根树的一种数列. 在组合数学中,\(Prufer\) 数列由有一个对于顶点标过号的树转化来的数列,点数为 \(n\) 的树转化来的 \(Prufer\) 数列长度为 ...
- JZOJ2020年8月11日提高组T3 页
JZOJ2020年8月11日提高组T3 页 题目 Description 战神阿瑞斯听说2008年在中华大地上,将举行一届规模盛大的奥林匹克运动会,心中顿觉异常兴奋,他想让天马在广阔的天空上,举行一场 ...
- JJWT 使用示例
一.添加依赖包 <dependency> <groupId>io.jsonwebtoken</groupId> <artifactId>jjwt-api ...
- moviepy音视频剪辑VideoClip类set_position方法pos参数的使用方法及作用
☞ ░ 前往老猿Python博文目录 ░ moviepy音视频剪辑VideoClip类set_position方法用于多个剪辑合成一个剪辑时设置调用剪辑实例的拷贝在合成剪辑的位置. 调用语法: set ...
- PyQt(Python+Qt)学习随笔:窗口对象尺寸调整相关的函数resize、showMaximized、showNormal、showMinimized
resize(width,height) resize可以直接调整窗口的尺寸,调整效果类似于鼠标直接拉伸或缩小窗口,但窗口大小的最大值.最小值受窗口的sizePolicy.sizeHint.minim ...
- Tomcat启动报错org.apache.catalina.core.StandardContext.startInternal One or more listeners failed to start. Full details will be found in the appropriate container log file
错误: 今天SVN导入新项目后启动项目时控制台报错,之后在网上搜了很多方法.下面列了一些大佬的解决方案: 1. 检查日志配置文件-logging.properties:https://www.cnbl ...
- 《Eroico》关卡与操作设计
操作设计: 没有给明操作教程,操作全靠蒙,只有改建的位置可以看到. 但游戏的难度并没有给玩家适应操作感,随着难度提升怪物血量增厚,但怪物并没有僵直英雄却有僵直.第一个小猫妖便给了玩家一个痛击. 方向键 ...
- Nginx 转发时的一个坑,运维居然让我背锅!!
最近遇到一个 Nginx 转发的坑,一个请求转发到 Tomcat 时发现有几个 http header 始终获取不到,导致线上出现 bug,运维说不是他的问题,这个锅我背了. 新增的几个 header ...
- 最简 Spring AOP 源码分析!
前言 最近在研究 Spring 源码,Spring 最核心的功能就是 IOC 容器和 AOP.本文定位是以最简的方式,分析 Spring AOP 源码. 基本概念 上面的思维导图能够概括了 Sprin ...
- 【题解】折纸 origami [SCOI2007] [P4468] [Bzoj1074]
[题解]折纸 origami [SCOI2007] [P4468] [Bzoj1074] 传送门:折纸 \(\text{origami [SCOI2007] [P4468]}\) \(\text{[B ...