题意:

问给定串有多少本质不同的子串?

思路:

子串必是某一后缀的前缀,假如是某一后缀\(sa[k]\),那么会有\(n - sa[k] + 1\)个前缀,但是其中有\(height[k]\)个和上一个重复,那么最终的贡献的新串为\(n - sa[k] + 1 - height[k]\)。故最终结果为\(\sum_{i = 1}^n (n - sa[k] + 1 - height[k])\),即 \(\frac{n * (n + 1)}{2} - \sum_{i = 1}^nheight[k]\)。

参考:

后缀数组——处理字符串的有力工具

代码:

#include<map>
#include<set>
#include<queue>
#include<cmath>
#include<stack>
#include<ctime>
#include<string>
#include<vector>
#include<cstdio>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 50000 + 5;
const int INF = 0x3f3f3f3f;
const ull seed = 11;
const int MOD = 1e9 + 7;
using namespace std; int str[maxn];
int t1[maxn], t2[maxn], c[maxn];
int sa[maxn];
int rk[maxn];
int height[maxn];
bool cmp(int *r, int a, int b, int l){
return r[a] == r[b] && r[a + l] == r[b + l];
}
void da(int *str, int n, int m){
n++;
int i, j, p, *x = t1, *y = t2;
for(i = 0; i < m; i++) c[i] = 0;
for(i = 0; i < n; i++) c[x[i] = str[i]]++;
for(i = 1; i < m; i++) c[i] += c[i - 1];
for(i = n - 1; i >= 0; i--) sa[--c[x[i]]] = i;
for(j = 1; j <= n; j <<= 1){
p = 0;
for(i = n - j; i < n; i++) y[p++] = i;
for(i = 0; i < n; i++) if(sa[i] >= j) y[p++] = sa[i] - j;
for(i = 0; i < m; i++) c[i] = 0;
for(i = 0; i < n; i++) c[x[y[i]]]++;
for(i = 1; i < m; i++) c[i] += c[i - 1];
for(i = n - 1; i >= 0; i--) sa[--c[x[y[i]]]] = y[i];
swap(x, y);
p = 1; x[sa[0]] = 0;
for(i = 1; i < n; i++)
x[sa[i]] = cmp(y, sa[i - 1], sa[i], j)? p - 1 : p++;
if(p >= n) break;
m = p;
}
int k = 0;
n--;
for(i = 0; i <= n; i++) rk[sa[i]] = i;
for(i = 0; i < n; i++){
if(k) k--;
j = sa[rk[i] - 1];
while(str[i + k] == str[j + k]) k++;
height[rk[i]] = k;
}
}
char s[maxn];
int main(){
int T;
scanf("%d", &T);
while(T--){
scanf("%s", s);
int len = strlen(s);
for(int i = 0; i < len; i++){
str[i] = s[i];
}
s[len] = 0;
da(str, len, 127);
ll n = len;
ll ans = n * (n + 1LL) / 2LL;
for(int i = 1; i <= n; i++){
ans -= height[i];
}
printf("%lld\n", ans);
}
return 0;
}

SPOJ SUBST1 New Distinct Substrings(后缀数组 本质不同子串个数)题解的更多相关文章

  1. SPOJ - SUBST1 New Distinct Substrings —— 后缀数组 单个字符串的子串个数

    题目链接:https://vjudge.net/problem/SPOJ-SUBST1 SUBST1 - New Distinct Substrings #suffix-array-8 Given a ...

  2. SPOJ 694 || 705 Distinct Substrings ( 后缀数组 && 不同子串的个数 )

    题意 : 对于给出的串,输出其不同长度的子串的种类数 分析 : 有一个事实就是每一个子串必定是某一个后缀的前缀,换句话说就是每一个后缀的的每一个前缀都代表着一个子串,那么如何在这么多子串or后缀的前缀 ...

  3. spoj 694. Distinct Substrings 后缀数组求不同子串的个数

    题目链接:http://www.spoj.com/problems/DISUBSTR/ 思路: 每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数.如果所有的后缀按照su ...

  4. 后缀数组:SPOJ SUBST1 - New Distinct Substrings

    Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...

  5. 【SPOJ – SUBST1】New Distinct Substrings 后缀数组

    New Distinct Substrings 题意 给出T个字符串,问每个字符串有多少个不同的子串. 思路 字符串所有子串,可以看做由所有后缀的前缀组成. 按照后缀排序,遍历后缀,每次新增的前缀就是 ...

  6. SPOJ Distinct Substrings(后缀数组求不同子串个数,好题)

    DISUBSTR - Distinct Substrings no tags  Given a string, we need to find the total number of its dist ...

  7. SPOJ - DISUBSTR Distinct Substrings (后缀数组)

    Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...

  8. SPOJ DISUBSTR Distinct Substrings 后缀数组

    题意:统计母串中包含多少不同的子串 然后这是09年论文<后缀数组——处理字符串的有力工具>中有介绍 公式如下: 原理就是加上新的,减去重的,这题是因为打多校才补的,只能说我是个垃圾 #in ...

  9. spoj Distinct Substrings 后缀数组

    给定一个字符串,求不相同的子串的个数. 假如给字符串“ABA";排列的子串可能: A B A AB  BA ABA 共3*(3+1)/2=6种; 后缀数组表示时: A ABA BA 对于A和 ...

随机推荐

  1. IP2188中文资料书

    IP2188 是一款集成 12 种.用于 USB 输出端口的快充协议 IC,支持 USB 端口充电协议.支持 11种快充协议,包括 USB TypeC PD2.0/PD3.0/PPS DFP,HVDC ...

  2. 【工具篇】Mysql的安装和使用

    [导读]Mysql是数据分析师入门级的技能之一,对于很多小白同学来说,可能还没有机会接触SQL知识.那么我们如何熟悉和练习SQL呢,今天教大家安装两个软件:MySQL和Navicat.后续我们会推出S ...

  3. Nginx报504 gateway timeout错误的解决方法(小丑搞笑版。。。)

    一.今天登录我的网站,突然发现报了下面的一个错误: 我的第一反应是:超时了应该是Nginx代理没有设置超时时间,默认的超时时间估计太小了,然后就按照正常的方式用Xshell连接服务器,应该是网络或者是 ...

  4. 转 Jmeter测试实践:文件下载接口

    Jmeter测试实践:文件下载接口   一 Jmeter步骤 1.打开jmeter4.0,新建测试计划,添加线程组.根据实际情况配置线程属性. 2.添加HTTP请求.根据接口文档进行配置. Basic ...

  5. Netty服务端Server代码说明

    本文是简单的Netty启动服务端代码理解笔记 public class MyServer { public static void main(String[] args) throws Excepti ...

  6. 公共错误码 - 支付宝开放平台 https://opendocs.alipay.com/open/common/105806

    公共错误码 - 支付宝开放平台 https://opendocs.alipay.com/open/common/105806

  7. OSS与文件系统的对比 文件存储 块存储 对象存储

    基本概念介绍_开发指南_对象存储 OSS-阿里云  https://help.aliyun.com/document_detail/31827.html 强一致性 Object 操作在 OSS 上具有 ...

  8. 【算法】数位 dp

    时隔多日,我终于再次开始写博客了!! 上午听了数位 dp,感觉没听懂,于是在网上进行一番愉 ♂ 快 ♀ 的学习后,写篇博来加深一下印象~~ 前置的没用的知识 数位 不同计数单位,按照一定顺序排列,它们 ...

  9. 获取本机IP和主机名

    如果是在windows环境: 使用InetAddress.getLocalHost()方法即可 package com.datongsoft.wg.common.util; import java.n ...

  10. Python3 如何查看内置函数都有哪些?

    数据科学交流群,群号:189158789,欢迎各位对数据科学感兴趣的小伙伴的加入! 上代码: 1 import builtins 2 num = len(dir(builtins)) 3 print( ...