题面描述:可以跳过

一个形如:

X1X2…Xn=Y1Y2..Ym

的等式称为二进制方程。

在二进制方程的两边:Xi和Yj (1<=i<=n;1<=j<=m)是二进制数字(0、1)或者一个变量(小写字母)。每个变量都是一个有固定长度的二进制代码,他可以在等式中取代变量的位置,称这个长度为变量的长度。为了解一个二进制方程,需要给其中的变量赋予适当的二进制代码,使得我们用他们替代等式中的相应的变量后(等式的两边都变成二进制代码),这个等式成立。

编程任务:

对于每一个给出的方程,计算一共有多少组解。已知变量最多有26个(26个英文小写字母),且等式的每一端的数字和变量的长度之和不超过10000。

输入格式

第一行:k(k<=26,变量的个数,规定使用小写英文字母中的前k个字母作为变量,如k=5,则变量a,b,c,d,e)。

第二行:k个正整数,中间用一个空格隔开,依次代表k个变量的长度。

第三行:等式左边的表达式。

第四行:等式右边的表达式。

输出格式

等式中出现的变量共有多少组解。

输入输出样例

输入 #1

2
4 2
1b1
a
输出 #1

4
输入 #2

5
4 2 4 4 2
1bad1
acbe
输出 #2

16

说明/提示

样例一:4组解

1 、a=1001; b=00

2、 a=1011; b=01

3、 a=1101; b=10

4、 a=1111; b=11)

样例二:K=5,变量:a,b,c,d,e。长度分别为:4 2 4 4 2。等式是:1bad1= acbe

输出16,即变量a,b,c,d,e共有16组解。

(为什么复制按钮还能粘贴上??(雾))


正解开始:

首先读懂题意我们知道,每一个字母都代表一个式子,且把每一个字母替换成数字后可以使得左右两个式子相等。

本人思路来源:先进行过样例式的枚举:

考虑这种情况:假如左边式子第1位是a,右边式子第一位是1,一个数字,一个字母,因为题意要满足对应位相等,所以我们可以确定字母a的第一位为1。但是,因为整个字符串中maybe有多个a,那么我们找到字符串中的其他的a,把它们第一位对应的位数赋值为1.

然而a的第一位的对应位确定,那么等号另一边的对应位也能确定了,而它又是一个字母,于是我们把这个字母的对应位也找出来进行赋值。。。。。。这么下去,解法逐渐明朗:并查集。

具体来说,我们可以按照这种方法,把所有的能遍历到的位置按照并查集处理,并看做一种情况。最后,看还剩几种情况,我们把答案高精度乘为2的几次方就OK了(因为每一位有0,1两种方法)qwq。

code:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=; int n,m,k,sum;
int num[maxn],fa[maxn],x[maxn],y[maxn]; inline int find(int x)
{
if(x==fa[x])return x;
fa[x]=find(fa[x]);
return fa[x];
} int main() {
num[]=;
scanf("%d",&k);
for(int i=,x;i<=k+;++i)
{
scanf("%d",&x);
num[i]=num[i-]+x;
sum+=x;//记录总不同的个数
}
char zfc[maxn];
scanf("%s",zfc);
for(int i=;zfc[i];++i)
{
if(zfc[i]>='a'&&zfc[i]<='z')
{
int c=zfc[i]-'a'+;//获取他是num数组第几个
for(int j=num[c];j<num[c+];++j)x[++n]=j;//按位置赋值
}
else x[++n]=zfc[i]-'';//数字的话
}
scanf("%s",zfc);
for(int i=;zfc[i];++i)
{
if(zfc[i]>='a'&&zfc[i]<='z')
{
int c=zfc[i]-'a'+;
for(int j=num[c];j<num[c+];++j)y[++m]=j;//字母
} else y[++m]=zfc[i]-'';//数字
}
if(n!=m)//连左右长度都不相等
{
printf("");return ;//直接输出零
}
for(int i=;i<maxn;++i)fa[i]=i;//初始化并查集找父亲
for(int i=;i<=n;++i)
{
int dx=find(x[i]),dy=find(y[i]);
if(dx+dy==)
{
printf("");
return ;
}
if(dx!=dy)
{
fa[max(dx,dy)]=min(dx,dy);
sum--;
}
}
int big[maxn]={},top=;
for(int i=sum;i>=;i--)
{
for(int i=;i<top;++i)big[i]<<=;
for(int i=;i<top;++i)if(big[i]>=) {
big[i+]+=big[i]/,big[i]%=;
}
for(;big[top];++top) {
big[top+]+=big[top]/,big[top]%=;
}
}
for(int i=top-;i>=;--i) printf("%d",big[i]);
return ;
}

完结qwq

p2456二进制方程 题解的更多相关文章

  1. 洛谷P2456 二进制方程

    题目 字符串模拟+并查集 建立两个并查集分别存放每个变量的每一位数的祖先,一个是1一个是2 考虑每个字母的每一位的数都是唯一的,先模拟,记录每一个变量的每一位. 一一映射到方程中去,最后将两个方程进行 ...

  2. Luogu p2456 二进制方程

    这是一道我也不知道我gu了多久的题目 (然鹅还有n多任务没有完成) 反正--我太难了 好了言归正传,题目链接 是一道校内测的题目(现在应该没有人没考了吧?) 思路的话,是神仙并查集√ 觉得虽然并查集很 ...

  3. P2456 [SDOI2006]二进制方程

    P2456 [SDOI2006]二进制方程 题解 拿个样例模拟一下发现 把等式两边对应展开,每个位置的填数都是一一对应的 比如第二个样例 分类讨论: (1)xi  yi  都是数字,但是不相同,此时无 ...

  4. 洛谷P2312 解方程题解

    洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...

  5. 洛谷 P2312 解方程 题解

    P2312 解方程 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 [1,m][1,m] 内的整数解(\(n\) 和 \(m\) 均为 ...

  6. [SDOI2006] 二进制方程

    并查集水题.维护变量的对应位的相关关系,判断不确定点(自由元)的个数即可. 代码中的p数组:p[1] 值的id, p[2~k+1]每个变量的第一位的id. #include <bits/stdc ...

  7. 洛谷P2312解方程题解

    题目 暴力能得\(30\),正解需要其他的算法操作,算法操作就是用秦九韶算法来优化. 秦九韶算法就是求多项式的值时,首先计算最内层括号内一次多项式的值,然后由内向外逐层计算一次多项式的值,然后就将求\ ...

  8. 2019.11.11&12题解

    Day1 考的不是很好,T1T2没区分度,T3想的太少,考试后期几乎都是在摸鱼,bitset乱搞也不敢打,只拿到了35分,跟前面的差距很大 A. 最大或 标签: 二进制+贪心 题解: 首先x,y中一定 ...

  9. 【USACO 3.2】Stringsobits (dp)

    题意:求第k大的最多有l个1的n位二进制. 题解:dp[i][j]表示长度为i最多有j个1的二进制有多少种,则有: 状态转移:dp[i][j]=dp[i-1][j]+dp[i-1][j-1],即第i位 ...

随机推荐

  1. Email功能的设定

    在前期制定发送邮件功能时,都是使用导入import smtplib模块来实现,虽说能实现, 但是对新人.刚接触的来说不太友好,虽然网上五花八门的教程一大推,但还是要自己花不少时间才搞定(笔者就是) 在 ...

  2. JQ scrollTop 无效的场景

    先要设置DOM为显示,然后在设置scrollTop,先后顺序不能调换.

  3. 数据库工具DbVisualize安装、破解教程,亲测可用

    之前工作中遇到生产环境不允许导入Oracle的dmp文件,只能导入sql脚本,但是表中存在clob字段,直接用plsql工具无法导出clob字段,用了下dbvisualizer可以直接导出,亲测可用. ...

  4. FZU2275 Game(kmp

    暑假wa的题了,,,看见vj的attempt痕迹打算挨个补了,简单kmp题,判断bob的串是不是全为0或者是alice的字串就好了 #include<algorithm> #include ...

  5. PAT A1025 PAT Ranking(25)

    题目描述 Programming Ability Test (PAT) is organized by the College of Computer Science and Technology o ...

  6. mysql基本用户

    创建数据库 CREATE DATABASE database_name; 删除数据库 DROP DATABASE table_name; 创建表 CREATE TABLE `tab_charpter2 ...

  7. Make It One CodeForces - 1043F (数论,最短路,好题)

    大意: 给定序列$a$, 求最小子集, 使得gcd为1. 对于数$x$, 素因子多少次幂是无关紧要的, 这样就可以用一个二进制数来表示. $x$取$gcd$后的二进制状态最多$2^7$, 可以暴力枚举 ...

  8. APOC官网触发器示例执行后Web页面一直转圈

    apoc使用触发器:如apoc官网指导 CREATE (d:Person {name:'Daniel'}) CREATE (l:Person {name:'Mary'}) CREATE (t:Pers ...

  9. Function(Of T) as T 泛型类型多态返回对象的实现

    Shared Function ResultT(Of T As result)(msg As String, Optional success As Boolean = False) As T Dim ...

  10. WebFont技术使用之如何在app中使用自定义字体

    参考 H5自定义字体解决方法(mark) 移动Web字体的使用 [原]移动web页面使用字体的思考 CSS @font-face规则 引用外部服务器字体