Prometheus Operator 的安装
Prometheus Operator 的安装
接下来我们用自定义的方式来对 Kubernetes 集群进行监控,但是还是有一些缺陷,比如 Prometheus、AlertManager 这些组件服务本身的高可用,当然我们也完全可以用自定义的方式来实现这些需求,我们也知道 Promethues 在代码上就已经对 Kubernetes 有了原生的支持,可以通过服务发现的形式来自动监控集群,因此我们可以使用另外一种更加高级的方式来部署 Prometheus:Operator
框架。
Operator
Operator
是由CoreOS公司开发的,用来扩展 Kubernetes API,特定的应用程序控制器,它用来创建、配置和管理复杂的有状态应用,如数据库、缓存和监控系统。Operator
基于 Kubernetes 的资源和控制器概念之上构建,但同时又包含了应用程序特定的一些专业知识,比如创建一个数据库的Operator
,则必须对创建的数据库的各种运维方式非常了解,创建Operator
的关键是CRD
(自定义资源)的设计。
CRD
是对 Kubernetes API 的扩展,Kubernetes 中的每个资源都是一个 API 对象的集合,例如我们在YAML文件里定义的那些spec
都是对 Kubernetes 中的资源对象的定义,所有的自定义资源可以跟 Kubernetes 中内建的资源一样使用 kubectl 操作。
Operator
是将运维人员对软件操作的知识给代码化,同时利用 Kubernetes 强大的抽象来管理大规模的软件应用。目前CoreOS
官方提供了几种Operator
的实现,其中就包括我们今天的主角:Prometheus Operator
,Operator
的核心实现就是基于 Kubernetes 的以下两个概念:
- 资源:对象的状态定义
- 控制器:观测、分析和行动,以调节资源的分布
当然我们如果有对应的需求也完全可以自己去实现一个Operator
,接下来我们就来给大家详细介绍下Prometheus-Operator
的使用方法。
介绍
首先我们先来了解下Prometheus-Operator
的架构图:
promtheus opeator
上图是Prometheus-Operator
官方提供的架构图,其中Operator
是最核心的部分,作为一个控制器,他会去创建Prometheus
、ServiceMonitor
、AlertManager
以及PrometheusRule
4个CRD
资源对象,然后会一直监控并维持这4个资源对象的状态。
其中创建的prometheus
这种资源对象就是作为Prometheus Server
存在,而ServiceMonitor
就是exporter
的各种抽象,exporter
前面我们已经学习了,是用来提供专门提供metrics
数据接口的工具,Prometheus
就是通过ServiceMonitor
提供的metrics
数据接口去 pull 数据的,当然alertmanager
这种资源对象就是对应的AlertManager
的抽象,而PrometheusRule
是用来被Prometheus
实例使用的报警规则文件。
这样我们要在集群中监控什么数据,就变成了直接去操作 Kubernetes 集群的资源对象了,是不是方便很多了。上图中的 Service 和 ServiceMonitor 都是 Kubernetes 的资源,一个 ServiceMonitor 可以通过 labelSelector 的方式去匹配一类 Service,Prometheus 也可以通过 labelSelector 去匹配多个ServiceMonitor。
安装
我们这里直接通过 Prometheus-Operator 的源码来进行安装,当然也可以用 Helm 来进行一键安装,我们采用源码安装可以去了解更多的实现细节。首页将源码 Clone 下来:
$ git clone https://github.com/coreos/kube-prometheus.git
$ cd manifests
$ ls
00namespace-namespace.yaml node-exporter-clusterRole.yaml
0prometheus-operator-0alertmanagerCustomResourceDefinition.yaml node-exporter-daemonset.yaml
......
最新的版本官方将资源https://github.com/coreos/prometheus-operator/tree/master/contrib/kube-prometheus迁移到了独立的 git 仓库中:https://github.com/coreos/kube-prometheus.git
进入到 manifests 目录下面,这个目录下面包含我们所有的资源清单文件,我们需要对其中的文件 prometheus-serviceMonitorKubelet.yaml 进行简单的修改,因为默认情况下,这个 ServiceMonitor 是关联的 kubelet 的10250端口去采集的节点数据,而我们前面说过为了安全,这个 metrics 数据已经迁移到10255这个只读端口上面去了,我们只需要将文件中的https-metrics
更改成http-metrics
即可,这个在 Prometheus-Operator 对节点端点同步的代码中有相关定义,感兴趣的可以点此查看完整代码:
Subsets: []v1.EndpointSubset{
{
Ports: []v1.EndpointPort{
{
Name: "https-metrics",
Port: 10250,
},
{
Name: "http-metrics",
Port: 10255,
},
{
Name: "cadvisor",
Port: 4194,
},
},
},
},
修改完成后,直接在该文件夹下面执行创建资源命令即可:
$ kubectl apply -f .
部署完成后,会创建一个名为monitoring
的 namespace,所以资源对象对将部署在改命名空间下面,此外 Operator 会自动创建4个 CRD 资源对象:
$ kubectl get crd |grep coreos
alertmanagers.monitoring.coreos.com 5d
prometheuses.monitoring.coreos.com 5d
prometheusrules.monitoring.coreos.com 5d
servicemonitors.monitoring.coreos.com 5d
可以在 monitoring 命名空间下面查看所有的 Pod,其中 alertmanager 和 prometheus 是用 StatefulSet 控制器管理的,其中还有一个比较核心的 prometheus-operator 的 Pod,用来控制其他资源对象和监听对象变化的:
$ kubectl get pods -n monitoring
NAME READY STATUS RESTARTS AGE
alertmanager-main-0 2/2 Running 0 21h
alertmanager-main-1 2/2 Running 0 21h
alertmanager-main-2 2/2 Running 0 21h
grafana-df9bfd765-f4dvw 1/1 Running 0 22h
kube-state-metrics-77c9658489-ntj66 4/4 Running 0 20h
node-exporter-4sr7f 2/2 Running 0 21h
node-exporter-9mh2r 2/2 Running 0 21h
node-exporter-m2gkp 2/2 Running 0 21h
prometheus-adapter-dc548cc6-r6lhb 1/1 Running 0 22h
prometheus-k8s-0 3/3 Running 1 21h
prometheus-k8s-1 3/3 Running 1 21h
prometheus-operator-bdf79ff67-9dc48 1/1 Running 0 21h
查看创建的 Service:
kubectl get svc -n monitoring
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
alertmanager-main ClusterIP 10.110.204.224 <none> 9093/TCP 23h
alertmanager-operated ClusterIP None <none> 9093/TCP,6783/TCP 23h
grafana ClusterIP 10.98.191.31 <none> 3000/TCP 23h
kube-state-metrics ClusterIP None <none> 8443/TCP,9443/TCP 23h
node-exporter ClusterIP None <none> 9100/TCP 23h
prometheus-adapter ClusterIP 10.107.201.172 <none> 443/TCP 23h
prometheus-k8s ClusterIP 10.107.105.53 <none> 9090/TCP 23h
prometheus-operated ClusterIP None <none> 9090/TCP 23h
prometheus-operator ClusterIP None <none> 8080/TCP 23h
可以看到上面针对 grafana 和 prometheus 都创建了一个类型为 ClusterIP 的 Service,当然如果我们想要在外网访问这两个服务的话可以通过创建对应的 Ingress 对象或者使用 NodePort 类型的 Service,我们这里为了简单,直接使用 NodePort 类型的服务即可,编辑 grafana 和 prometheus-k8s 这两个 Service,将服务类型更改为 NodePort:
$ kubectl edit svc grafana -n monitoring
$ kubectl edit svc prometheus-k8s -n monitoring
$ kubectl get svc -n monitoring
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
grafana NodePort 10.98.191.31 <none> 3000:32333/TCP 23h
prometheus-k8s NodePort 10.107.105.53 <none> 9090:30166/TCP 23h
......
更改完成后,我们就可以通过去访问上面的两个服务了,比如查看 prometheus 的 targets 页面:
promtheus operator targets
配置
我们可以看到大部分的配置都是正常的,只有两三个没有管理到对应的监控目标,比如 kube-controller-manager 和 kube-scheduler 这两个系统组件,这就和 ServiceMonitor 的定义有关系了,我们先来查看下 kube-scheduler 组件对应的 ServiceMonitor 资源的定义:(prometheus-serviceMonitorKubeScheduler.yaml)
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
labels:
k8s-app: kube-scheduler
name: kube-scheduler
namespace: monitoring
spec:
endpoints:
- interval: 30s # 每30s获取一次信息
port: http-metrics # 对应service的端口名
jobLabel: k8s-app
namespaceSelector: # 表示去匹配某一命名空间中的service,如果想从所有的namespace中匹配用any: true
matchNames:
- kube-system
selector: # 匹配的 Service 的labels,如果使用mathLabels,则下面的所有标签都匹配时才会匹配该service,如果使用matchExpressions,则至少匹配一个标签的service都会被选择
matchLabels:
k8s-app: kube-scheduler
上面是一个典型的 ServiceMonitor 资源文件的声明方式,上面我们通过selector.matchLabels
在 kube-system 这个命名空间下面匹配具有k8s-app=kube-scheduler
这样的 Service,但是我们系统中根本就没有对应的 Service,所以我们需要手动创建一个 Service:(prometheus-kubeSchedulerService.yaml)
apiVersion: v1
kind: Service
metadata:
namespace: kube-system
name: kube-scheduler
labels:
k8s-app: kube-scheduler
spec:
selector:
component: kube-scheduler
ports:
- name: http-metrics
port: 10251
targetPort: 10251
protocol: TCP
10251是
kube-scheduler
组件 metrics 数据所在的端口,10252是kube-controller-manager
组件的监控数据所在端口。
其中最重要的是上面 labels 和 selector 部分,labels 区域的配置必须和我们上面的 ServiceMonitor 对象中的 selector 保持一致,selector
下面配置的是component=kube-scheduler
,为什么会是这个 label 标签呢,我们可以去 describe 下 kube-scheduelr 这个 Pod:
$ kubectl describe pod kube-scheduler-master -n kube-system
Name: kube-scheduler-master
Namespace: kube-system
Node: master/10.151.30.57
Start Time: Sun, 05 Aug 2018 18:13:32 +0800
Labels: component=kube-scheduler
tier=control-plane
......
我们可以看到这个 Pod 具有component=kube-scheduler
和tier=control-plane
这两个标签,而前面这个标签具有更唯一的特性,所以使用前面这个标签较好,这样上面创建的 Service 就可以和我们的 Pod 进行关联了,直接创建即可:
$ kubectl create -f prometheus-kubeSchedulerService.yaml
$ kubectl get svc -n kube-system -l k8s-app=kube-scheduler
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kube-scheduler ClusterIP 10.102.119.231 <none> 10251/TCP 18m
创建完成后,隔一小会儿后去 prometheus 查看 targets 下面 kube-scheduler 的状态:
promethus kube-scheduler error
我们可以看到现在已经发现了 target,但是抓取数据结果出错了,这个错误是因为我们集群是使用 kubeadm 搭建的,其中 kube-scheduler 默认是绑定在127.0.0.1
上面的,而上面我们这个地方是想通过节点的 IP 去访问,所以访问被拒绝了,我们只要把 kube-scheduler 绑定的地址更改成0.0.0.0
即可满足要求,由于 kube-scheduler 是以静态 Pod 的形式运行在集群中的,所以我们只需要更改静态 Pod 目录下面对应的 YAML 文件即可:
$ ls /etc/kubernetes/manifests/
etcd.yaml kube-apiserver.yaml kube-controller-manager.yaml kube-scheduler.yaml
将 kube-scheduler.yaml 文件中-command
的--address
地址更改成0.0.0.0
:
containers:
- command:
- kube-scheduler
- --leader-elect=true
- --kubeconfig=/etc/kubernetes/scheduler.conf
- --address=0.0.0.0
修改完成后我们将该文件从当前文件夹中移除,隔一会儿再移回该目录,就可以自动更新了,然后再去看 prometheus 中 kube-scheduler 这个 target 是否已经正常了:
promethues-operator-kube-scheduler
大家可以按照上面的方法尝试去修复下 kube-controller-manager 组件的监控。
上面的监控数据配置完成后,现在我们可以去查看下 grafana 下面的 dashboard,同样使用上面的 NodePort 访问即可,第一次登录使用 admin:admin 登录即可,进入首页后,可以发现已经和我们的 Prometheus 数据源关联上了,正常来说可以看到一些监控图表了:
promethues-operator-grafana
Prometheus Operator 的安装的更多相关文章
- Kubernetes 监控:Prometheus Operator
安装 前面的章节中我们学习了用自定义的方式来对 Kubernetes 集群进行监控,基本上也能够完成监控报警的需求了.但实际上对上 Kubernetes 来说,还有更简单方式来监控报警,那就是 Pro ...
- helm 安装prometheus operator 并监控ingress
1.helm安装 curl https://raw.githubusercontent.com/helm/helm/master/scripts/get > get_helm.shchmod 7 ...
- k8s Helm安装Prometheus Operator
Ubuntu 18 Kubernetes集群的安装和部署 以及Helm的安装完成了k8s的集群和helm的安装,今天我们来看看Prometheus的监控怎么搞.Prometheus Operator ...
- 部署 Prometheus Operator - 每天5分钟玩转 Docker 容器技术(179)
本节在实践时使用的是 Prometheus Operator 版本 v0.14.0.由于项目开发迭代速度很快,部署方法可能会更新,必要时请参考官方文档. 下载最新源码 git clone https: ...
- Prometheus Operator 监控Kubernetes
Prometheus Operator 监控Kubernetes 1. Prometheus的基本架构 Prometheus是一个开源的完整监控解决方案,涵盖数据采集.查询.告警.展示整个监控流程 ...
- Kubernetes 监控方案之 Prometheus Operator(十九)
目录 一.Prometheus 介绍 1.1.Prometheus 架构 1.2.Prometheus Operator 架构 二.Helm 安装部署 2.1.Helm 客户端安装 2.2.Tille ...
- prometheus operator(Kubernetes 集群监控)
一.Prometheus Operator 介绍 Prometheus Operator 是 CoreOS 开发的基于 Prometheus 的 Kubernetes 监控方案,也可能是目前功能最全面 ...
- 部署 Prometheus Operator【转】
本节在实践时使用的是 Prometheus Operator 版本 v0.14.0.由于项目开发迭代速度很快,部署方法可能会更新,必要时请参考官方文档. 下载最新源码 git clone https: ...
- 简单4步,利用Prometheus Operator实现自定义指标监控
本文来自Rancher Labs 在过去的文章中,我们花了相当大的篇幅来聊关于监控的话题.这是因为当你正在管理Kubernetes集群时,一切都会以极快的速度发生变化.因此有一个工具来监控集群的健康状 ...
随机推荐
- Java主线程在子线程执行完毕后再执行
一.join() Thread中的join()方法就是同步,它使得线程之间由并行执行变为串行执行. public class MyJoinTest { public static void main( ...
- PSO算法
1.简介粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源于对鸟群捕食的行为研究 .该算 ...
- 整理了一份比较全面的PHP开发编码规范.
这些年来多从事Linux下PHP和C相关的开发,带过很多项目和团队,下面是根据经验整理的PHP编码规范,可以用作给大家的范例和参考,根据需要进行取舍和修改! (可能最新的一些php5的规范不够完整,今 ...
- labelme
项目:https://github.com/wkentaro/labelme?tdsourcetag=s_pcqq_aiomsg 说明:https://www.bilibili.com/video/a ...
- 总是访问到tomcat首页解决
部署代码后总是访问到tomcat首页解决 没有把路径写全 访问:养成带上绝对路径的习惯,否则总是访问到tomcat的首页 http://114.116.65.232:8085/ssoserver/
- Anaconda中安装Cascade RCNN(Detectron)的若干问题
安装参考https://github.com/zhaoweicai/Detectron-Cascade-RCNN/blob/master/INSTALL.md 1.对于在 python detectr ...
- Java工程师学习指南第3部分:Spring与SpringMVC源码解析
本文整理了微信公众号[Java技术江湖]发表和转载过的Spring全家桶优质文章,想看到更多Java技术文章,就赶紧关注吧. 前后端分离,我怎么就选择了 Spring Boot + Vue 技术栈? ...
- java中length和length()的区别?
在java中String类可以定义字符串变量和字符串数组,length()用于求String字符串对象的长度,而length用 于求String字符串数组的长度. length()是求String ...
- winform 更新文件上传(一)
using Common; using DevExpress.XtraEditors; using FileModel.UpLoad; using System; using System.Colle ...
- selenium3关于ddt驱动之读取json文件。。。
from selenium import webdriver import ddt import time import unittest """ DDT(驱动.json ...