题目很简单,, 但是wa了三次,, 用<vector>之前一定要记得clear()。。。
简单说下 spfa的问题 和bell_forman有点类似 每次取出一个点 然后更新 并把更新了的节点入队(更新的值可能会影响到最优解) 当队列为空的时候算法结束(无法优化)
这里的vis数组是为了防止重复入队 但每个节点可能多次入队 所以在拿出来的时候 vis标记要消去
最后说下负环的问题 引用一下
对于不存在负权回路的图来说,上述算法是一定会结束的。因为算法在反复优化各个最短路径长度,总有一个时刻会进入“无法再优化”的局面,此时一旦队列读空,算法就结束了。
然而,如果图中存在一条权值为负的回路,就糟糕了,算法会在其上反复运行(因为d[]加上一个负数肯定变下了,所以在有负环的情况下,会不断有数进入队列),通过“绕圈”来
无休止地试图减小某些相关点的最短路径值。假如我们不能保证图中没有负权回路,一种“结束条件”是必要的。这种结束条件是什么呢?
  思考Bellman-Ford算法,它是如何结束的?显然,最朴素的Bellman-Ford算法不管循环过程中发生了什么,一概要循环|V|-1遍才肯结束。凭直觉我们可以感到,SPFA算法
“更聪明一些”,就是说我们可以猜测,假如在SPFA中,一个点进入队列——或者说一个点被处理——超过了|V|次,那么就可以断定图中存在负权回路了。(http://www.cnblogs.com/jiangu66/p/3235361.html) 23号比赛加油~
void spfa(int s)
{

int
vis[V];
int
d[V],ret[V];
for
(int i=;i<=n;i++) d[i]=inf,vis[i]=ret[i]=;
d[s]=;
queue<int> q;
q.push(s);
ret[s]++;
vis[s]=;
while
(!q.empty())
{

int
now=q.front();
q.pop();
vis[now]=;
for
(int i=;i<fuck[now].size();i++)
{

node temp=fuck[now][i];
if
(d[temp.point]>d[now]+temp.cost)
{

d[temp.point]=d[now]+temp.cost;
if
(vis[temp.point]==)
{

vis[temp.point]=;
ret[temp.point]++;
q.push(temp.point);
if
(ret[temp.point]>V)
{

cout<<-<<endl;
return
;
}
}
}
} }

cout<<d[n]<<endl;
}

int
main()
{

while
(cin>>n>>m)
{

if
(n==&&m==) break;
for
(int i=;i<=n;i++) fuck[i].clear();
for
(int i=;i<=m;i++)
{

int
x,y,cost;
cin>>x>>y>>cost;
node temp;
temp.cost=cost;
temp.point=x;
fuck[y].push_back(temp);
temp.point=y;
fuck[x].push_back(temp);
}

dijstra();
//spfa(1);
}
return
;
}

复习最短路 spfa+dijstra堆优化的更多相关文章

  1. HDU-6290_奢侈的旅行(Dijstra+堆优化)

    奢侈的旅行 Time Limit: 14000/7000 MS (Java/Others) Memory Limit: 512000/512000 K (Java/Others) Problem De ...

  2. 【Dijstra堆优化】HDU 3986 Harry Potter and the Final Battle

    http://acm.hdu.edu.cn/showproblem.php?pid=3986 [题意] 给定一个有重边的无向图,T=20,n<=1000,m<=5000 删去一条边,使得1 ...

  3. SPFA和堆优化的Dijk

    朴素dijkstra时间复杂度$O(n^{2})$,通过使用堆来优化松弛过程可以使时间复杂度降到O((m+n)logn):dijkstra不能用于有负权边的情况,此时应使用SPFA,两者写法相似. 朴 ...

  4. dijkstra最短路算法(堆优化)

    这个算法不能处理负边情况,有负边,请转到Floyd算法或SPFA算法(SPFA不能处理负环,但能判断负环) SPFA(SLF优化):https://www.cnblogs.com/yifan0305/ ...

  5. 单源最短路——朴素Dijkstra&堆优化版

    朴素Dijkstra 是一种基于贪心的算法. 稠密图使用二维数组存储点和边,稀疏图使用邻接表存储点和边. 算法步骤: 1.将图上的初始点看作一个集合S,其它点看作另一个集合 2.根据初始点,求出其它点 ...

  6. 最短路模板[spfa][dijkstra+堆优化][floyd]

    借bzoj1624练了一下模板(虽然正解只是floyd) spfa: #include <cstdio> #include <cstring> #include <alg ...

  7. 洛谷P1144 最短路计数【堆优化dijkstra】

    题目:https://www.luogu.org/problemnew/show/P1144 题意:问1到各个节点的最短路有多少条. 思路:如果松弛的时候发现是相等的,说明可以经过该点的最短路径到达当 ...

  8. hdu 2066 Dijstra 堆优化

    嗯 有广搜的意思 #include<cstdio> #include<iostream> #include<queue> #include<vector> ...

  9. 850. Dijkstra求最短路 II(堆优化模板)

    给定一个n个点m条边的有向图,图中可能存在重边和自环,所有边权均为非负值. 请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出-1. 输入格式 第一行包含整数n和m. 接下来m行每行 ...

随机推荐

  1. Oracle JDBC 标准连接实例

    Oracle JDBC 标准连接实例 // 创建一个数据库连接 Connection con = null; // 创建预编译语句对象,一般用PreparedStatement不用Statement ...

  2. Python动态展示遗传算法求解TSP旅行商问题(转载)

    版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/jiang425776024/articl ...

  3. How do negative margins in CSS work and why is (margin-top:-5 != margin-bottom:5)?

    How do negative margins in CSS work and why is (margin-top:-5 != margin-bottom:5)? 解答   Negative mar ...

  4. Linux设备驱动程序学习----目录

    目录 设备驱动程序简介 1.设备驱动程序简介 构造和运行模块 2.内核模块和应用程序的对比 3.模块编译和装载 4.模块的内核符号表  5.模块初始化和关闭  6.模块参数  7.用户空间编写驱动程序 ...

  5. Django - ORM - 事务, 乐观锁, 悲观锁

    事务 概念 Transaction 事务:一个最小的不可再分的工作单元:通常一个事务对应一个完整的业务(例如银行账户转账业务,该业务就是一个最小的工作单元) 一个完整的业务需要批量的DML(inser ...

  6. Smarty的分页实现

    Smarty中的分页有很多方法.1.使用Smarty的分页插件,如Pager,pagnition,sliding_page等,不过感觉都不是太好,几乎都有一些Bug.有兴趣试用和自己去改进的朋友可以看 ...

  7. mongodb 报错 not authorized on admin to execute command【 version 3.2.18 】

    mongodb version 3.2.18 测试问题: 分析: 从报错内容上看是权限不够,但不明了为什么,因为已经使用的超级用户权限: { "_id" : "admin ...

  8. JMX简介及was上的使用

    参考文章:https://www.ibm.com/developerworks/cn/websphere/library/techarticles/0908_sunyan_jmxdeploy/inde ...

  9. [转]js禁止微信浏览器下拉显示黑底查看网址,不影响内部Scroll

    原贴:https://www.cnblogs.com/jasonwang2y60/p/6848464.html 原贴:https://www.cnblogs.com/jasonwang2y60/p/6 ...

  10. 使用xhprof进行线上PHP性能追踪及分析

    转自: http://avnpc.com/pages/profiler-php-performance-online-by-xhprof