【luogu1797】faebdc的烦恼-莫队
题目背景
鸟哥(faebdc)自从虐暴NOIP2013以来依然勤奋学习,每天上各种OJ刷题,各种比赛更是不在话下。但这天他遇到了一点小小的麻烦……在一届“Orz鸟哥杯”上,题目是在是太多了!足有n道!鸟哥看得头晕眼花,他需要你的帮助。
每道题都有一个难度值ai,由于wangxz神犇已经提前帮助鸟哥将这些难度值升序排列,所以鸟哥并不想知道哪些题难度低或者高,他只想知道在某些题目ai,ai+1,…,aj中,出现最多的难度值出现的次数(他为啥想知道这么奇葩的东西呢……自己去问)。
你的任务就是对于鸟哥的每一次询问(i,j),告诉他在从ai到aj这j-i+1道题之中,出现最多的难度值出现的次数(询问共有q次)。
如果你成功地帮助了鸟哥,鸟哥将会带你通过省选。
题目描述
给出一个升序排列的整数数组a1,a2,…an,你的任务是对于鸟哥的一系列询问(i,j),回答ai,ai+1,…aj中出现次数最多的值所出现的次数。
输入格式
输入仅包含一组数据。
第一行为两个整数n,q(1<=n<=100000,1<=q<=200000)。第二行包含n个升序排列的整数a1,a2,…,an(-100000<=ai<=100000),代表每一道题的难度值。以下q行每行包含两个整数i和j(1<=i<=j<=n),代表鸟哥询问的区间。
输出格式
对于每次询问,单独输出一行,该行仅有一个整数,表示该区间内出现最多的数值所出现的次数。
输入输出样例
9 1 1 1 1 2 2 3 3 4 4 3 8
2
说明/提示
各个测试点1s
思路:
莫队,求众数出现的次数,cnt[]存次数,sum存的是出现次数为某个值得输的个数,如果此时得sum[]为零,则说明把此数删去,没有其他数的众数为此时的答案,答案必须减一,但减一后的sum不用加,因为之前在加到最大值之前加过一次,从之前更新过来的时候,已经加过了。
代码:
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<cmath>
#define N 2000000
using namespace std;
int a[N],b[N],len,n,m,tot[N];
int sum[N],cnt[N],ans,Ans[N];
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void add(int x)
{
cnt[x]++;
sum[cnt[x]]++;
ans=max(ans,cnt[x]);
}
void del(int x)
{
sum[cnt[x]]--;
if(!sum[cnt[x]])
if(ans==cnt[x])
{
ans--;
}
cnt[x]--;
}
struct node{
int l,r,pos,id;
bool operator < (const node &a)const
{
if(pos==a.pos)return r<a.r;
return pos<a.pos;
}
}e[N];
int main()
{
scanf("%d%d",&n,&m);
len=sqrt(n);
for(int i=1;i<=n;i++)a[i]=b[i]=read();
sort(b+1,b+n+1);
int le=unique(b+1,b+n+1)-b-1;
for(int i=1;i<=n;i++) a[i]=lower_bound(b+1,b+le+1,a[i])-b;
for(int i=1;i<=m;i++)
{
scanf("%d%d",&e[i].l,&e[i].r);
e[i].id=i;
e[i].pos=(e[i].l-1)/len+1;
}
int l=1,r=0;
sort(e+1,e+m+1);
for(int i=1;i<=m;i++)
{
while(l<e[i].l)del(a[l++]);
while(r>e[i].r)del(a[r--]);
while(l>e[i].l)add(a[--l]);
while(r<e[i].r)add(a[++r]);
Ans[e[i].id]=ans;
}
for(int i=1;i<=m;i++) printf("%d\n",Ans[i]);
return 0;
}
【luogu1797】faebdc的烦恼-莫队的更多相关文章
- faebdc的烦恼 莫队
faebdc的烦恼 莫队 题面 思路 有点难想的莫队. 首先我们肯定要一个cnt[i]记录难度i出现的次数,但是我们发现每次删去一个难度后,如果那个难度的个数恰好是当前最多次数,我们就可能要更新一下答 ...
- 普通莫队--洛谷P1997 【faebdc的烦恼】
离散化+莫队 cnt数组表示某个颜色出现的次数 sum数组表示某个数量出现的颜色种类 其它细节问题就按照莫队的模板来的 #include<cstdio> #include<algor ...
- BZOJ 3289: Mato的文件管理[莫队算法 树状数组]
3289: Mato的文件管理 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 2399 Solved: 988[Submit][Status][Di ...
- NBUT 1457 莫队算法 离散化
Sona Time Limit:5000MS Memory Limit:65535KB 64bit IO Format: Submit Status Practice NBUT 145 ...
- 【填坑向】bzoj2038小Z的袜子 莫队
学莫队必做题,,,但是懒得写.今天来填个坑 莫队水题 莫队实际上就是按一个玄学顺序来离线计算询问,保证复杂度只会多一个n1/2,感觉是玄学(离线算法都很玄学) 易错点:要开long long(卡我半天 ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 7687 Solved: 3516[Subm ...
- NPY and girls-HDU5145莫队算法
Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem Description ...
- Codeforces617 E . XOR and Favorite Number(莫队算法)
XOR and Favorite Number time limit per test: 4 seconds memory limit per test: 256 megabytes input: s ...
- Bzoj 2038---[2009国家集训队]小Z的袜子(hose) 莫队算法
题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=2038 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色 ...
随机推荐
- S03_CH13_ZYNQ A9 TCP UART双核AMP例程
S03_CH13_ZYNQ A9 TCP UART双核AMP例程 13.1概述 ZYNQ中存在两个独立的ARM核,在很多应用场景中往往只需使用其中的1个核心即可.然而,对于复杂的设计,例如多任务,并行 ...
- scratch少儿编程第一季——02、scratch界面介绍
各位小伙伴大家好: 上期我们简单的介绍了Scratch的一些基本信息,和scratch软件的下载. 今天我们一起来了解一下Scratch的编程界面的介绍. 关于版本我考虑之后还是决定基于Scratch ...
- [二叉树算法]让树所有叶子节点连成一个单链表,让rchild作为 next指针
//让树所有叶子节点连成一个单链表,让rchild作为 next指针 LNode *head=null,*pre=null;//全局变量 LNode *InOrder(BTNode *T){ if(T ...
- linux中的内核级防火墙(SELINUX)
SElinux是基于内核开发出来的一种安全机制,被称之为内核级加强型防火墙,有力的提升了系统的安全性. SElinux的作用分为两方面:1.在服务上面加上标签: 2.在功能上面限制功能 在linux系 ...
- MD5加密处理
无论传送过程和存储方式,都是以明文的方式,很不安全!一旦泄漏,将会造成很大的损失! 插件名称jQuery.MD5.js: /** * jQuery MD5 hash algorithm functio ...
- 面试经典算法:优先队列,最大堆,堆排序,左偏树Golang实现
堆排序 使用优先队列-最小/最大堆可实现. 优先队列 优先队列是一种能完成以下任务的队列:插入一个数值,取出最小的数值(获取数值,并且删除).优先队列可以用二叉树来实现,我们称这种为二叉堆. 最小堆 ...
- ActivityMQ消息中间件【待完成】
1,MQ的引入 使用场景,将耗时的通知业务交给消息中间件[业务逻辑进行解耦] 使用消息中间件的逻辑交互 2,MQ的应用场景 首先消息中间件是一个异步处理 有两个关键点:①耗时:②业务的耦合度 案例1: ...
- 浅谈.NET中的类型和装箱、拆箱原理
谈到装箱拆箱,大概的意思就是值类型和引用类型的相互转换呗---值类型到引用类型叫装箱,反之则叫拆箱.这当然没有问题,可是你只知道这么多,那么建议你花点时间看看楼主这篇文章 1. .NET中的类型 为了 ...
- C++ DLL debug版本在其他PC上缺少依赖的处理方式
1.正常情况提供给其他人的都是Release版本DLL 2.在需要提供Debug版本时,目标机器上可能会缺少环境,或者和生成DLL的环境不匹配导致DLL无法加载,提示DLL无法找到. 3.使用DLL依 ...
- datatables初始化用法
var recordTable = $('#record_table').DataTable({ "fnInitComplete": function () { //表格初始化完成 ...