正文前先来一波福利推荐:

福利一:

百万年薪架构师视频,该视频可以学到很多东西,是本人花钱买的VIP课程,学习消化了一年,为了支持一下女朋友公众号也方便大家学习,共享给大家。

福利二:

毕业答辩以及工作上各种答辩,平时积累了不少精品PPT,现在共享给大家,大大小小加起来有几千套,总有适合你的一款,很多是网上是下载不到。

获取方式:

微信关注 精品3分钟 ,id为 jingpin3mins,关注后回复   百万年薪架构师 ,精品收藏PPT  获取云盘链接,谢谢大家支持!

------------------------正文开始---------------------------

storm中的一些原语:

要说明上面的问题,得先了解storm中的一些原语,比如:

tuple和message
tuple:在storm中,消息是通过tuple来抽象表示的,每个tuple知道它从哪里来,应往哪里去,包含了其在tuple-tree(如果是anchored的话)或者DAG中的位置,等等信息。

spout
spout充当了tuple的发送源,spout通过和其它消息源,比如kafka交互,将消息封装为tuple,发送到流的下游。

bolt
bolt是tuple的实际处理单元,通过从spout或者另一个bolt接收tuple,进行业务处理,将自己加入tuple-tree(通过在emit方法中设置anchors)或DAG,然后继续将tuple发送到流的下游。
acker
acker是一种特殊的bolt,其接收来自spout和bolt的消息,主要功能是追踪tuple的处理情况,如果处理完成,会向tuple的源头spout发送确认消息,否则,会发送失败消息,spout收到失败的消息,根据配置和自定义的情况会进行消息的丢弃、重放处理。

spout、bolt、acker的关系:
spout将tuple发送给流的下游的bolts.
bolt收到tuple,处理后发送给下游的bolts.
spout向acker发送请求ack的消息.
bolt向acker发送请求ack的消息.
acker向bolt和spout发送确认ack的消息.
简单的关系如下所示:

上图展示了spout、bolts等形成了一个DAG,如何追踪这个DAG的执行过程,就是storm保证仅处理一次消息的语义的机制所在。

storm如何追踪消息(tuple)的处理

spout在调用emit/emitDirect方法发送tuple时,会以单播或者广播的方式,将消息发送给流的下游的component/task/bolt,如果配置了acker,那么会在每次emit调用之后,向acker发送请求ack的消息:

;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; spout向acker发送请求ack消息
;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; rooted?表示是否设置了acker
(if (and rooted?
(not (.isEmpty out-ids)))
(do
(.put pending root-id [task-id
message-id
{:stream out-stream-id :values values}
(if (sampler) (System/currentTimeMillis))])
(task/send-unanchored task-data
;;表示这是一个流初始化的消息
ACKER-INIT-STREAM-ID
;;将下游组件的out-id和0组成一个异或链,发送给acker用于追踪
[root-id (bit-xor-vals out-ids) task-id]
overflow-buffer)) ;; 如果没有配置acker,则调用自身的ack方法
(when message-id
(ack-spout-msg executor-data task-data message-id
{:stream out-stream-id :values values}
(if (sampler) ) "0:")))

从上面的代码可以看出,每次emit tuple后,spout会向acker发送一个流ID为ACKER-INIT-STREAM-ID的消息,用于将DAG或者tuple-tree中的节点信息交给acker,acker会利用这个信息来追踪tuple-tree或DAG的完成。

而spout调用emit/emitDirect方法,将tuple发到下游的bolts,也同时会发送用于追踪DAG完成情况的信息:

;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; spout向流的下游emit消息
;;;;;;;;;;;;;;;;;;;;;;;;;;;; (let [tuple-id (if rooted?
;; 如果有acker,tuple的MessageId会包含一个<root-id,id>的哈希表
;; root-id和id都是long型64位整数
(MessageId/makeRootId root-id id)
(MessageId/makeUnanchored))
;;实例化tuple
out-tuple (TupleImpl. worker-context
values
task-id
out-stream-id
tuple-id)] ;; 发送至队列,最终发送给流的下游的task/bolt
(transfer-fn out-task
out-tuple
overflow-buffer)
))

如果是spout -> bolt或者bolt -> bolt,这个信息就是tuple的MessageId,其内部维护一个哈希表:

// map anchor to id
private Map<Long, Long> _anchorsToIds;

键为root-id,表示spout,值表示tuple在tuple-tree或者DAG的根(spout)或者经过的边(bolt),但这里没有利用任何常规意义上的“树”的算法,而是采用异或的方式来存储这个值:

spout -> bolt,值被初始化为一个long型64位整数.
bolt -> bolt,值被初始化为一个long型64位整数,并和_anchorsToIds中的旧值进行按位异或,将结果更新到_anchorsToIds中.
如果是spout -> acker,或者bolt -> acker,那么用于追踪的是tuple的values:

spout -> acker : [root-id (bit-xor-vals out-ids) task-id]
bolt -> acker : [root (bit-xor id ack-val) ..]
下面给出上面调用的bit-xor-vals和bit-xor方法的代码:

(defn bit-xor-vals
[vals]
(reduce bit-xor vals)) (defn bit-xor
"Bitwise exclusive or"
{:inline (nary-inline 'xor)
:inline-arities >?
:added "1.0"}
([x y] (. clojure.lang.Numbers xor x y))
([x y & more]
(reduce1 bit-xor (bit-xor x y) more)))

示例
说起来有点抽象,看个例子。

假设我们有1个spout,n个bolt,1个acker:

1.spout
spout发送tuple到下游的bolts:

;; id_1是发送到bolt_1的tuple-id,依此类推
spout :
->bolt_1 : id_1
->bolt_2 : id_2
..
->bolt_n : id_n

2.bolt
bolt收到tuple,在execute方法中进行必要的处理,然后调用emit方法,最后调用ack方法:

;; bolt_1调用emit方法,追踪消息的这样一个值:让id_1和bid_1按位进行异或.
;; bid_1和id_1类似,是个long型的64位随机整数,在emit这一步生成
bolt_1 emit : id_1 ^ bid_1

;; bolt_1调用ack方法,并将值表达为如下方式的异或链的结果
bolt_1 ack : 0 ^ bid_1 ^ id_1 ^ bid_1 = 0 ^ id_1

以上,可以看出bolt进行了emit-ack组合后,其自身在异或链中的作用消失了,也就是说tuple在此bolt得到了处理。

(当然,此时的ack还没有得到acker的确认,假设acker确认了,那么上面所说的tuple在bolt得到了处理就成立了。)

来看看acker的确认。

3.acker
acker收到来自spout的tuple:

;; spout发消息给acker,tuple的MessageId包含下面的异或链的结果
spout -> acker : 0 ^ id_1 ^ id_2 ^ .. ^ id_n

;; acker收到来spout的消息,对tuple的ackVal进行处理,如下所示:
acker : 0 ^ (0 ^ id_1 ^ id_2 ^ .. ^ id_n) = 0 ^ id_1 ^ id_2 ^ .. ^ id_n

acker收到来自bolt的tuple:

;; bolt_1发消息给acker:
bolt_1 -> acker : 0 ^ id_1

;; acker维护的对应此tuple的源spout的ackVal :
ackVal : 0 ^ id_1 ^ id_2 ^ .. ^ id_n

;; acker进行确认,也就是拿上面的两个值进行异或:
acker : (0 ^ id_1) ^ (0 ^ id_1 ^ id_2 ^ .. ^ id_n) = 0 ^ id_2 ^ .. ^ id_n

可以看出,bolt_1向acker请求ack,acker收到请求ack,异或之后,id_1的作用消失。也就是说,bolt_1已处理完毕这个tuple。

所以,在acker看来,如果某个bolt的处理完成,则此bolt在异或链中的作用就消失了。

如果所有的bolt 都得到处理,那么acker将会观察到ackVal值变成了0:

ackVal = 0
= (0 ^ id_1) ^ (0 ^ id_1 ^ .. ^ id_n) ^ .. (0 ^ id_n)
= (0 ^ 0) ^ (id_1 ^ id_1) ^ (id_2 ^ id_2) ^ .. ^ (id_n ^ id_n)

如果出现了ackVal = 0,说明两个可能:

spout发送的tuple都处理完成,tuple-tree或者DAG已完成。
概率性出错,也就是说在极小的概率下,即使不按上面的确认流程来走,异或链的结果也可能出现0.但这个概率极小,小到什么程度呢?
用官方的话说就是,如果每秒发送1万个ack消息,50,000,000年时才可能发生这种情况。
如果ackVal不为0,说明tuple-tree或DAG没有完成。如果长时间不为0,通过超时,可以触发一个超时回调,在这个回调中调用spout的fail方法,来进行重放。

如此,就保证了消息处理不会漏掉,但可能会重复。

转自:https://blog.csdn.net/gsky1986/article/details/46984229

storm是如何保证at least once语义的?的更多相关文章

  1. storm是怎样保证at least once语义的

    背景 本篇看看storm是通过什么机制来保证消息至少处理一次的语义的. storm中的一些原语 要说明上面的问题,得先了解storm中的一些原语,比方: tuple和message 在storm中,消 ...

  2. storm如何保证at least once语义?

    背景 前期收到的问题: 1.在Topology中我们可以指定spout.bolt的并行度,在提交Topology时Storm如何将spout.bolt自动发布到每个服务器并且控制服务的CPU.磁盘等资 ...

  3. storm基础框架分析

    背景 前期收到的问题: 1.在Topology中我们可以指定spout.bolt的并行度,在提交Topology时Storm如何将spout.bolt自动发布到每个服务器并且控制服务的CPU.磁盘等资 ...

  4. Storm介绍及与Spark Streaming对比

    Storm介绍 Storm是由Twitter开源的分布式.高容错的实时处理系统,它的出现令持续不断的流计算变得容易,弥补了Hadoop批处理所不能满足的实时要求.Storm常用于在实时分析.在线机器学 ...

  5. storm(二)消息的可靠处理

    storm 通过 trident保证了对消息提供不同的级别.beast effort,at least once, exactly once. 一个tuple 从spout流出,可能会导致大量的tup ...

  6. Storm VS Flink ——性能对比

    1.背景 Apache Flink 和 Apache Storm 是当前业界广泛使用的两个分布式实时计算框架.其中 Apache Storm(以下简称"Storm")在美团点评实时 ...

  7. Storm实践(一):基础知识

    storm简介 Storm是一个分布式实时流式计算平台,支持水平扩展,通过追加机器就能提供并发数进而提高处理能力:同时具备自动容错机制,能自动处理进程.机器.网络等异常. 它可以很方便地对流式数据进行 ...

  8. Storm集群安装部署步骤【详细版】

    作者: 大圆那些事 | 文章可以转载,请以超链接形式标明文章原始出处和作者信息 网址: http://www.cnblogs.com/panfeng412/archive/2012/11/30/how ...

  9. Storm与Spark Streaming比较

    前言spark与hadoop的比较我就不多说了,除了对硬件的要求稍高,spark应该是完胜hadoop(Map/Reduce)的.storm与spark都可以用于流计算,但storm对应的场景是毫秒级 ...

随机推荐

  1. 056_统计/etc/passwd 中 root 出现的次数

    #!/bin/bash#每读取一行文件内容,即从第 1 列循环到最后 1 列,依次判断是否包含 root 关键词,如果包含则 x++awk -F: '{i=1;while(i<=NF){if($ ...

  2. umediter实现粘贴word图片

    图片的复制无非有两种方法,一种是图片直接上传到服务器,另外一种转换成二进制流的base64码目前限chrome浏览器使用首先以um-editor的二进制流保存为例:打开umeditor.js,找到UM ...

  3. 后缀数组 1031: [JSOI2007]字符加密Cipher

    /*1031: [JSOI2007]字符加密Cipher Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4926 Solved: 2020[Submit ...

  4. OS创建页目录和页

    ;开始创建页目录项(PDE) .create_pde: ; 创建Page Directory Entry mov eax, PAGE_DIR_TABLE_POS ; PAGE_DIR_TABLE_PO ...

  5. 异步协程asyncio+aiohttp

    aiohttp中文文档 1. 前言 在执行一些 IO 密集型任务的时候,程序常常会因为等待 IO 而阻塞.比如在网络爬虫中,如果我们使用 requests 库来进行请求的话,如果网站响应速度过慢,程序 ...

  6. ID生成算法(二)

    上一篇文章介绍了一种用雪花算法生成GUID的方法,下面介绍里外一种生成GUID并导出为.txt文件的方法: 话不多少 show you the code ! <!DOCTYPE html> ...

  7. C语言的历史

    1.ALGOL语言 ALGOL ,为算法语言(ALGOrithmic Language)的缩写,是计算机发展史上首批产生的高级程式语言家族.当时还是晶体管计算机流行的时代,由于ALGOL语句和普通语言 ...

  8. meshing-八分之一圆球

    ​原视频下载地址:https://yunpan.cn/cqwiFDCg6PbFj  访问密码 d1c8

  9. Spring MVC 三大组件

    ㈠ HandlerMapping 处理器映射(一般通过扫描包配置) 通过处理器映射,你可以将Web 请求映射到正确的处理器 Controller 上.当接收到请求时,DispactherServlet ...

  10. python中的with的用法,上下文管理器

    with是从Python2.5引入的一个新的语法,它是一种上下文管理协议,目的在于从流程图中把 try,except 和finally 关键字和 资源分配释放相关代码统统去掉,简化try….excep ...