为方便收藏学习,转载自:https://www.jb51.net/article/158168.htm

本文实例为大家分享了Python数据预处理的具体代码,供大家参考,具体内容如下

1.导入标准库

1
2
3
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

2.导入数据集

1
2
3
4
5
dataset = pd.read_csv('data (1).csv') # read_csv:读取csv文件
#创建一个包含所有自变量的矩阵,及因变量的向量
#iloc表示选取数据集的某行某列;逗号之前的表示行,之后的表示列;冒号表示选取全部,没有冒号,则表示选取第几列;values表示选取数据集里的数据。
X = dataset.iloc[:, :-1].values # 选取数据,不选取最后一列。
y = dataset.iloc[:, 3].values # 选取数据,选取每行的第3列数据dataset.
z = dataset.iloc[:, 0:8]  # 选取数据,选取每行的前7列。注意这里不包括第8列。
w = dataset.iloc[:, 8]     #选取数据,选取我每行的第8列。和上一行进行相比,这是在取过前7行之后,只取第八列。
上述的意思可以这样考虑,选取数据进行训练,前7列是特征,第8列是标签。

3.缺失数据

1
2
3
4
5
from sklearn.preprocessing import Imputer #进行数据挖掘及数据分析的标准库,Imputer缺失数据的处理
#Imputer中的参数:missing_values 缺失数据,定义怎样辨认确实数据,默认值:nan ;strategy 策略,补缺值方式 : mean-平均值 , median-中值 , most_frequent-出现次数最多的数 ; axis =0取列 =1取行
imputer = Imputer(missing_values = 'NaN', strategy = 'mean', axis = 0)
imputer = imputer.fit(X[:, 1:3])#拟合fit
X[:, 1:3] = imputer.transform(X[:, 1:3])

4.分类数据

1
2
3
4
5
6
7
8
from sklearn.preprocessing import LabelEncoder,OneHotEncoder
labelencoder_X=LabelEncoder()
X[:,0]=labelencoder_X.fit_transform(X[:,0])
onehotencoder=OneHotEncoder(categorical_features=[0])
X=onehotencoder.fit_transform(X).toarray()
#因为Purchased是因变量,Python里面的函数可以将其识别为分类数据,所以只需要LabelEncoder转换为分类数字
labelencoder_y=LabelEncoder()
y=labelencoder_y.fit_transform(y)

5.将数据集分为训练集和测试集

1
2
3
4
5
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=0)
#X_train(训练集的字变量),X_test(测试集的字变量),y_train(训练集的因变量),y_test(训练集的因变量)
#训练集所占的比重0.2~0.25,某些情况也可分配1/3的数据给训练集;train_size训练集所占的比重
#random_state决定随机数生成的方式,随机的将数据分配给训练集和测试集;random_state相同时会得到相同的训练集和测试集

6.特征缩放

1
2
3
4
5
#特征缩放(两种方式:一:Standardisation(标准化);二:Normalisation(正常化))
from sklearn.preprocessing import StandardScaler
sc_X=StandardScaler()
X_train=sc_X.fit_transform(X_train)#拟合,对X_train进行缩放
X_test=sc_X.transform(X_test)#sc_X已经被拟合好了,所以对X_test进行缩放时,直接转换X_test

7.数据预处理模板

(1)导入标准库
(2)导入数据集
(3)缺失和分类很少遇到
(4)将数据集分割为训练集和测试集
(5)特征缩放,大部分情况下不需要,但是某些情况需要特征缩放

以上所述是给大家介绍的Python数据预处理详解整合。

Python----数据预处理代码实例的更多相关文章

  1. Python数据预处理:机器学习、人工智能通用技术(1)

    Python数据预处理:机器学习.人工智能通用技术 白宁超  2018年12月24日17:28:26 摘要:大数据技术与我们日常生活越来越紧密,要做大数据,首要解决数据问题.原始数据存在大量不完整.不 ...

  2. python data analysis | python数据预处理(基于scikit-learn模块)

    原文:http://www.jianshu.com/p/94516a58314d Dataset transformations| 数据转换 Combining estimators|组合学习器 Fe ...

  3. python数据预处理for knn

    机器学习实战 一书中第20页数据预处理,从文本中解析数据的程序. import numpy as np def dataPreProcessing(fileName): with open(fileN ...

  4. Python数据预处理—归一化,标准化,正则化

    关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常用的 ...

  5. Python数据预处理之清及

    使用Pandas进行数据预处理 数据清洗中不是每一步都是必须的,按实际需求操作. 内容目录 1.数据的生成与导入 2.数据信息查看 2.1.查看整体数据信息 2.2.查看数据维度.列名称.数据格式 2 ...

  6. Python数据预处理(sklearn.preprocessing)—归一化(MinMaxScaler),标准化(StandardScaler),正则化(Normalizer, normalize)

      关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常 ...

  7. Python数据预处理:使用Dask和Numba并行化加速

    如果你善于使用Pandas变换数据.创建特征以及清洗数据等,那么你就能够轻松地使用Dask和Numba并行加速你的工作.单纯从速度上比较,Dask完胜Python,而Numba打败Dask,那么Num ...

  8. python数据预处理和特性选择后列的映射

    我们在用python进行机器学习建模时,首先需要对数据进行预处理然后进行特征工程,在这些过程中,数据的格式可能会发生变化,前几天我遇到过的问题就是: 对数据进行标准化.归一化.方差过滤的时候数据都从D ...

  9. Python数据预处理—训练集和测试集数据划分

    使用sklearn中的函数可以很方便的将数据划分为trainset 和 testset 该函数为sklearn.cross_validation.train_test_split,用法如下: > ...

随机推荐

  1. 15组-Legendary-团队项目总结

    一.项目名称:教室选座系统 二.项目进度表: 项目进度表 活动名称 所属阶段 计划开始时间 计划结束时间 实际结束时间 完成情况 项目方向 项目确立阶段 2019.11.14 2019.11.15 2 ...

  2. [RxJS] Convert a Node.js style callback to Observable: bindNodeCallback

    It's just like bindCallback, but the callback is expected to be of type callback(error, result). imp ...

  3. 003_创建simulink文件

    001_创建simulink文件 1. 打开MATLAB,打开simulink 2. 打开空白模块 3. 保存,并打开模块的选择 4. 在模块里面选择后拖出模块后连线 或在搜索名称后拖出来 或在空白的 ...

  4. [JLOI2013]卡牌游戏 概率DP

    [JLOI2013]卡牌游戏 概率DP 题面 \(dfs\)复杂度爆炸,考虑DP.发现决策时,我们只用关心当前玩家是从庄家数第几个玩家与当前抽到的牌是啥.于是设计状态\(f[i][j]\)表示有\(i ...

  5. Turn Off Windows Firewall Using PowerShell and CMD

    If you want to turn off the Windows Firewall, there are three methods. One is using the GUI which is ...

  6. 数据结构实验之图论五:从起始点到目标点的最短步数(BFS)

    分析:有向图里面找最短路径,原理就是每一步都走距离自己最近的路, 一旦发现走一步可以到,那么这个一定是最短的. #include <bits/stdc++.h> using namespa ...

  7. shiro 配置注解后无权访问不进行页面跳转异常:org.apache.shiro.authz.UnauthorizedException: Subject does not have permission

    该问题需要使用异常管理: <!-- 无权访问跳转的页面 --> <bean class="org.springframework.web.servlet.handler.S ...

  8. CentOS 7 常用命令大全(转)

    博主最近疯狂迷恋上linux的centos 7 系统,特意从网上找了一篇centos 7的命令大全来学习,下面我分享下这个博客. 转载自:https://blog.csdn.net/o0darknes ...

  9. kvm 学习(二)镜像

    Linux下 如何通过命令行使用现有的镜像创建.启动kvm虚拟机 这里假定已经创建好了相应的镜像: eg:我这里制作的镜像名称为zu1-centos7.img # ls zu1-centos7.img ...

  10. Wireshark 序

    1. Foreword 前言 2. Who should read this document? 谁适合读该文档? 3. Acknowledgements 致谢 4. About this docum ...