Classification
==============

#1. C4.5

Quinlan, J. R. 1993. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers Inc.

Google Scholar Count in October 2006: 6907

#2. CART

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and
Regression Trees. Wadsworth, Belmont, CA, 1984.

Google Scholar Count in October 2006: 6078

#3. K Nearest Neighbours (kNN)

Hastie, T. and Tibshirani, R. 1996. Discriminant Adaptive Nearest
Neighbor Classification. IEEE Trans. Pattern
Anal. Mach. Intell. (TPAMI). 18, 6 (Jun. 1996), 607-616.
DOI= http://dx.doi.org/10.1109/34.506411

Google SCholar Count: 183

#4. Naive Bayes

Hand, D.J., Yu, K., 2001. Idiot's Bayes: Not So Stupid After All?
Internat. Statist. Rev. 69, 385-398.

Google Scholar Count in October 2006: 51

Statistical Learning
====================

#5. SVM

Vapnik, V. N. 1995. The Nature of Statistical Learning
Theory. Springer-Verlag New York, Inc.

Google Scholar Count in October 2006: 6441

#6. EM

McLachlan, G. and Peel, D. (2000). Finite Mixture Models.
J. Wiley, New York.

Google Scholar Count in October 2006: 848

Association Analysis
====================

#7. Apriori

Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining
Association Rules. In Proc. of the 20th Int'l Conference on Very Large
Databases (VLDB '94), Santiago, Chile, September 1994.
http://citeseer.comp.nus.edu.sg/agrawal94fast.html

Google Scholar Count in October 2006: 3639

#8. FP-Tree

Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns without
candidate generation. In Proceedings of the 2000 ACM SIGMOD
international Conference on Management of Data (Dallas, Texas, United
States, May 15 - 18, 2000). SIGMOD '00. ACM Press, New York, NY, 1-12.
DOI= http://doi.acm.org/10.1145/342009.335372

Google Scholar Count in October 2006: 1258

Link Mining
===========

#9. PageRank

Brin, S. and Page, L. 1998. The anatomy of a large-scale hypertextual
Web search engine. In Proceedings of the Seventh international
Conference on World Wide Web (WWW-7) (Brisbane,
Australia). P. H. Enslow and A. Ellis, Eds. Elsevier Science
Publishers B. V., Amsterdam, The Netherlands, 107-117.
DOI= http://dx.doi.org/10.1016/S0169-7552(98)00110-X

Google Shcolar Count: 2558

#10. HITS

Kleinberg, J. M. 1998. Authoritative sources in a hyperlinked
environment. In Proceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms (San Francisco, California, United States, January
25 - 27, 1998). Symposium on Discrete Algorithms. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 668-677.

Google Shcolar Count: 2240

Clustering
==========

#11. K-Means

MacQueen, J. B., Some methods for classification and analysis of
multivariate observations, in Proc. 5th Berkeley Symp. Mathematical
Statistics and Probability, 1967, pp. 281-297.

Google Scholar Count in October 2006: 1579

#12. BIRCH

Zhang, T., Ramakrishnan, R., and Livny, M. 1996. BIRCH: an efficient
data clustering method for very large databases. In Proceedings of the
1996 ACM SIGMOD international Conference on Management of Data
(Montreal, Quebec, Canada, June 04 - 06, 1996). J. Widom, Ed.
SIGMOD '96. ACM Press, New York, NY, 103-114.
DOI= http://doi.acm.org/10.1145/233269.233324

Google Scholar Count in October 2006: 853

Bagging and Boosting
====================

#13. AdaBoost

Freund, Y. and Schapire, R. E. 1997. A decision-theoretic
generalization of on-line learning and an application to
boosting. J. Comput. Syst. Sci. 55, 1 (Aug. 1997), 119-139.
DOI= http://dx.doi.org/10.1006/jcss.1997.1504

Google Scholar Count in October 2006: 1576

Sequential Patterns
===================

#14. GSP

Srikant, R. and Agrawal, R. 1996. Mining Sequential Patterns:
Generalizations and Performance Improvements. In Proceedings of the
5th international Conference on Extending Database Technology:
Advances in Database Technology (March 25 - 29, 1996). P. M. Apers,
M. Bouzeghoub, and G. Gardarin, Eds. Lecture Notes In Computer
Science, vol. 1057. Springer-Verlag, London, 3-17.

Google Scholar Count in October 2006: 596

#15. PrefixSpan

J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal and
M-C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by
Prefix-Projected Pattern Growth. In Proceedings of the 17th
international Conference on Data Engineering (April 02 - 06,
2001). ICDE '01. IEEE Computer Society, Washington, DC.

Google Scholar Count in October 2006: 248

Integrated Mining
=================

#16. CBA

Liu, B., Hsu, W. and Ma, Y. M. Integrating classification and
association rule mining. KDD-98, 1998, pp. 80-86.
http://citeseer.comp.nus.edu.sg/liu98integrating.html

Google Scholar Count in October 2006: 436

Rough Sets
==========

#17. Finding reduct

Zdzislaw Pawlak, Rough Sets: Theoretical Aspects of Reasoning about
Data, Kluwer Academic Publishers, Norwell, MA, 1992

Google Scholar Count in October 2006: 329

Graph Mining
============

#18. gSpan

Yan, X. and Han, J. 2002. gSpan: Graph-Based Substructure Pattern
Mining. In Proceedings of the 2002 IEEE International Conference on
Data Mining (ICDM '02) (December 09 - 12, 2002). IEEE Computer
Society, Washington, DC.

Google Scholar Count in October 2006: 155

18 Candidates for the Top 10 Algorithms in Data Mining的更多相关文章

  1. Top 10 Algorithms for Coding Interview--reference

    By X Wang Update History:Web Version latest update: 4/6/2014PDF Version latest update: 1/16/2014 The ...

  2. Top 10 Algorithms of 20th and 21st Century

    Top 10 Algorithms of 20th and 21st Century MATH 595 (Section TTA) Fall 2014 TR 2:00 pm - 3:20 pm, Ro ...

  3. 转:Top 10 Algorithms for Coding Interview

    The following are top 10 algorithms related concepts in coding interview. I will try to illustrate t ...

  4. Favorites of top 10 rules for success

    Dec. 31, 2015 Stayed up to last minute of 2015, 12:00am, watching a few of videos about top 10 rules ...

  5. [转]Top 10 DTrace scripts for Mac OS X

    org link: http://dtrace.org/blogs/brendan/2011/10/10/top-10-dtrace-scripts-for-mac-os-x/ Top 10 DTra ...

  6. Top 10 Methods for Java Arrays

    作者:X Wang 出处:http://www.programcreek.com/2013/09/top-10-methods-for-java-arrays/ 转载文章,转载请注明作者和出处 The ...

  7. Top 10 Universities for Artificial Intelligence

    1. Massachusetts Institute of Technology, Cambridge, MA Massachusetts Institute of Technology is a p ...

  8. Top 10 Free Wireless Network hacking/monitoring tools for ethical hackers and businesses

    There are lots of free tools available online to get easy access to the WiFi networks intended to he ...

  9. TOP 10开源的推荐系统简介

    最近这两年推荐系统特别火,本文搜集整理了一些比较好的开源推荐系统,即有轻量级的适用于做研究的SVDFeature.LibMF.LibFM等,也有重量级的适用于工业系统的 Mahout.Oryx.Eas ...

随机推荐

  1. 最新 中手游java校招面经 (含整理过的面试题大全)

    从6月到10月,经过4个月努力和坚持,自己有幸拿到了网易雷火.京东.去哪儿.中手游等10家互联网公司的校招Offer,因为某些自身原因最终选择了中手游.6.7月主要是做系统复习.项目复盘.LeetCo ...

  2. alertmanager的web页面显示UTC时间的问题

    1.http://192.168.1.144:9093/#/alerts 显示的告警时间是UTC时间 2.脚本的变量 {"status":"success"}[ ...

  3. Spring之23:AbstractBeanFactory,Bean的加载

    <spring源码之:循环依赖> AbstractBeanFactory的作用:别名管理,单例创建与注册,工厂方法FactoryBean支持. 由图我们直接的看出,AbstractBean ...

  4. 20191011-构建我们公司自己的自动化接口测试框架-Util的AssertResult模块

    AssertResult主要就是进行结果断言的了,因为断言结果分2种情况,一种是断言词,一种是断言sheet,如果涉及断言sheet,则需要操作excel到对应的断言表断言所有的字段并且书写断言结果主 ...

  5. 第十六章:网络IPC 套接字

    一.IP地址和端口 套接字接口可以用于计算机间通信.目前计算机间使用套接字通讯需要保证处于同一网段. 为了查看是否处于同一网段,我们可以使用IP地址判断. IP地址是计算机在网络中的唯一标识.IP地址 ...

  6. Hibernate的入门Curd用法

    今天分享的是hibernate关系映射框架的入门用法 一:Hibernate简介 Hibernate是一个开放源代码的对象关系映射框架,它对JDBC进行了非常轻量级的对象封装,它将POJO与数据库表建 ...

  7. Neo4j查询语句总结

    最近一直在做图数据库的相关工作,对neo4j的查询语言Cypher使用较多,故在此总结记录.Cypher作为图数据库的查询语言,感觉和关系型数据库的查询语言sql差不多吧. 1.如何找到一个节点x,x ...

  8. 怎样通过混入(Mixin)实现多继承

    js不提供现成的多重继承的方法, 但可以通过Object.assign()来手动实现: function Father1(name){ this.name = name; } function Fat ...

  9. (十一)easyUI之下拉框

    <%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...

  10. Angular 惰性路由

    根路由上的一个 loadChildren 属性,设置为一个字符串.这样就是惰性路由了. angular6 这样写:loadChildren: './background-check/backgroun ...