卡了一上午常数,本地13s,可是bzoj 就是过不去~

#include <bits/stdc++.h>
#define N 102
#define M 55
#define ll long long
#define inf -1
#define setIO(s) freopen(s".in","r",stdin) , freopen("de.out","w",stdout)
using namespace std;
char *p1,*p2,buf[100000];
#define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
int rdint() {int x=0; char c=nc(); while(c<48) c=nc(); while(c>47) x=(((x<<2)+x)<<1)+(c^48),c=nc(); return x;}
ll rdll() {ll x=0; char c=nc(); while(c<48) c=nc(); while(c>47) x=(((x<<2)+x)<<1)+(c^48),c=nc(); return x;}
int n;
ll m;
ll f[N][N],dis[N][N][70],tmp[N],g[N];
void solve()
{
int i,j,k;
n=rdint();
m=rdll();
for(i=0;i<=n;++i)
for(j=0;j<=n;++j)
for(k=0;k<70;++k) dis[i][j][k]=-1;
for(i=1;i<=n;++i)
{
for(k=0;k<=M;++k)
dis[i][i][k]=0;
}
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
ll p=rdll();
if(p)
{
dis[i][j][0]=max(dis[i][j][0], p);
}
}
}
for(int l=1;;++l)
{
for(k=1;k<=n;++k)
{
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
if(dis[i][k][l-1]!=-1 && dis[k][j][l-1]!=-1)
{
dis[i][j][l]=max(dis[i][j][l], dis[i][k][l-1]+dis[k][j][l-1]);
}
}
}
}
ll re=0;
for(i=1;i<=n;++i) re=max(re, dis[1][i][l]);
if(re>=m) {
i=l;
break;
}
}
int flag=0;
ll ans=0;
for(int l=i;l>=0;--l)
{
if(!flag)
{
flag=1;
for(i=1;i<=n;++i)
{
if(dis[1][i][l]>=m)
{
flag=0;
}
}
if(flag==0) continue;
else
{
// for(i=1;i<=n;++i)
for(j=1;j<=n;++j) tmp[j]=dis[1][j][l];
ans+=(1ll<<l);
}
}
else
{
for(i=0;i<=n;++i) g[i]=-1;
for(k=1;k<=n;++k)
{
for(j=1;j<=n;++j)
{
if(dis[k][j][l]!=inf && tmp[k]!=inf)
{
g[j]=max(g[j], tmp[k]+dis[k][j][l]);
}
}
}
int cc=0;
for(i=1;i<=n;++i) if(g[i]>=m) cc=1;
if(!cc)
{
for(j=1;j<=n;++j) tmp[j]=g[j];
ans+=(1ll<<l);
}
}
}
printf("%lld\n",ans+1);
}
int main()
{
// setIO("input");
int T;
scanf("%d",&T);
while(T--)
{
solve();
}
return 0;
}

  

BZOJ 2165: 大楼 倍增Floyd的更多相关文章

  1. bzoj 2165: 大楼【Floyd+矩阵乘法+倍增+贪心】

    1<<i的结果需要是long long的话i是long long是没用的--要写成1ll<<i--我别是个傻子吧 虽然写的是二进制贪心,但是我觉得二分可能更好写吧(但是会慢) ...

  2. [BZOJ 2165] 大楼 【DP + 倍增 + 二进制】

    题目链接:BZOJ - 2165 题目分析: 这道题我读了题之后就想不出来怎么做,题解也找不到,于是就请教了黄学长,黄学长立刻秒掉了这道题,然后我再看他的题解才写出来..Orz 使用 DP + 倍增 ...

  3. BZOJ 2165: 大楼

    Time Limit: 40 Sec Memory Limit: 259 MB Submit: 957 Solved: 353 [Submit][Status][Discuss] Descriptio ...

  4. bzoj2165: 大楼(倍增floyd)

    题目大意:一个有向图,n(<=100)个点求一条长度>=m(<=10^18)的路径最少经过几条边. 一开始以为是矩乘,蓝鹅当时还没开始写,所以好像给CYC安利错了嘿嘿嘿QWQ 第一眼 ...

  5. BZOJ.4180.字符串计数(后缀自动机 二分 矩阵快速幂/倍增Floyd)

    题目链接 先考虑 假设S确定,使构造S操作次数最小的方案应是:对T建SAM,S在SAM上匹配,如果有S的转移就转移,否则操作数++,回到根节点继续匹配S.即每次操作一定是一次极大匹配. 简单证明:假设 ...

  6. 【CF461E】Appleman and a Game 倍增floyd

    [CF461E]Appleman and a Game 题意:你有一个字符串t(由A,B,C,D组成),你还需要构造一个长度为n的字符串s.你的对手需要用t的子串来拼出s,具体来说就是每次找一个t的子 ...

  7. 2018.11.09 bzoj4773: 负环(倍增+floyd)

    传送门 跟上一道题差不多. 考虑如果环上点的个数跟最短路长度有单调性那么可以直接上倍增+floyd. 然而并没有什么单调性. 于是我们最开始给每个点初始化一个长度为0的自环,于是就有单调性了. 代码: ...

  8. 2018.11.09 bzoj1706: relays 奶牛接力跑(倍增+floyd)

    传送门 倍增+floyd板子题. 先列出状态fi,j,kf_{i,j,k}fi,j,k​表示经过iii条边从jjj到kkk的最短路. 然后发现可以用fi−1,j,kf_{i-1,j,k}fi−1,j, ...

  9. BZOJ4773: 负环(倍增Floyd)

    题意 题目链接 Sol 倍增Floyd,妙妙喵 一个很显然的思路(然而我想不到是用\(f[k][i][j]\)表示从\(i\)号点出发,走\(k\)步到\(j\)的最小值 但是这样复杂度是\(O(n^ ...

随机推荐

  1. 网络编程[第二篇]基于udp协议的套接字编程

    udp协议下的套接字编程 一.udp是无链接的    不可靠的 而上篇的tcp协议是可靠的,会有反馈信息来确认信息交换的完成与否 基于udp协议写成的服务端与客户端,各司其职,不管对方是否接收到信息, ...

  2. python — 生成器、推导式、递归

    目录 1 生成器(函数的变异) 2 推导式 3 递归 1 生成器(函数的变异) 判断一个函数是否是生成器函数:只需看函数内部是否有yield # 生成器函数(内部是否包含yield) def func ...

  3. Maven学习存档(3)——eclipse集成maven

    一.安装Maven插件 在eclipse的菜单中选择Help——Install New Software 在弹出框的Work with中写入插件安装地址:http://m2eclipse.sonaty ...

  4. kube-dns和coreDNS的使用

    内部服务发现 前面我们给大家讲解了 Service 的用法,我们可以通过 Service 生成的 ClusterIP(VIP)来访问 Pod 提供的服务,但是在使用的时候还有一个问题:我们怎么知道某个 ...

  5. 消息服务百科全书——High Availability

    1.1为何需要Replication 在Kafka在0.8以前的版本中,是没有Replication的,一旦某一个Broker宕机,则其上所有的Partition数据都不可被消 费,这与Kafka数据 ...

  6. 植物大战僵尸:寻找召唤僵尸关键CALL

    实验目标:通过遍历寻找召唤僵尸的CALL,通过调用CALL出现自定义的僵尸,加速僵尸的出现. 僵尸CALL的遍历技巧: 我们可以通过僵尸出现在屏幕中的个数来遍历寻找僵尸出现的CALL 首先打开CE-& ...

  7. 谈谈对Spring IOC的理解(转发)

    学习过Spring框架的人一定都会听过Spring的IoC(控制反转) .DI(依赖注入)这两个概念,对于初学Spring的人来说,总觉得IoC .DI这两个概念是模糊不清的,是很难理解的,今天和大家 ...

  8. javaIO——LineNumberReader

    LineNumberReader 是java字符流中的一员,它继承自 BufferedReader,只是在 BufferedReader 基础上,提供了对当前流位置所在文本行的标记记录.先来看看定义: ...

  9. sipp如何避免dead call

    uac 和 uas 都加上  -deadcall_wait 0

  10. 微信小程序异步回调

    场景如下:现有一个方法需要等待其他N个异步函数执行完毕后执行,callback麻烦的头大,翻了一波API原来小程序已经支持 async函数,那一切就好办了. 废话不多说,直接开始撸... 第一步:打开 ...