洛谷 P1044 栈
题目背景
栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表。
栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈)。
栈的重要性不言自明,任何一门数据结构的课程都会介绍栈。宁宁同学在复习栈的基本概念时,想到了一个书上没有讲过的问题,而他自己无法给出答案,所以需要你的帮忙。
题目描述
宁宁考虑的是这样一个问题:一个操作数序列,从1,2,一直到n(图示为1到3的情况),栈A的深度大于n。
现在可以进行两种操作,
1.将一个数,从操作数序列的头端移到栈的头端(对应数据结构栈的push操作)
- 将一个数,从栈的头端移到输出序列的尾端(对应数据结构栈的pop操作)
使用这两种操作,由一个操作数序列就可以得到一系列的输出序列,下图所示为由1 2 3生成序列2 3 1的过程。
(原始状态如上图所示)
你的程序将对给定的n,计算并输出由操作数序列1,2,…,n经过操作可能得到的输出序列的总数。
输入输出格式
输入格式:
输入文件只含一个整数n(1≤n≤18)
输出格式:
输出文件只有一行,即可能输出序列的总数目
输入输出样例
3
5 假设j最后一个出栈,那么前j-1个数在之前都以入栈出栈,后n-j个数在j之后入栈,且已经出栈
前后相对独立,所以 f[n]=Σ f[j-1]*f[n-j]
#include<cstdio>
using namespace std;
int f[];
int main()
{
int n;
scanf("%d",&n);
f[]=f[]=;
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)
f[i]+=f[j-]*f[i-j];
printf("%d",f[n]);
}
洛谷 P1044 栈的更多相关文章
- 洛谷P1044 栈(Catalan数)
P1044 栈 题目背景 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈). 栈的重要 ...
- 洛谷——P1044 栈
P1044 栈——卡特兰数 题目背景 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈) ...
- 洛谷 p1044 栈 【Catalan(卡特兰数)】【经典题】
题目链接:https://www.luogu.org/problemnew/show/P1044 转载于:https://www.luogu.org/blog/QiXingZhi/solution-p ...
- 洛谷 - P1044 - 栈 - 简单dp
https://www.luogu.org/problemnew/show/P1044 由于是用标签搜索进来的,所以这道题一定是有dp的解法. 很显然规定每次加入元素之前可以从栈中清理出任意数量的元素 ...
- 洛谷P1044 栈
之前看这题还是一头雾水,现在看:啊啊啊lydnb! 思考了一段时间,发现可以用DP. 令f[i]表示有i辆车时的方案数. 我一开始考虑的是在后面加车,可是这样搞不出状态转移方程来. 然后我考虑从前面加 ...
- 洛谷P1044栈(DP)
题目背景 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即poppoppop(从栈顶弹出一个元素)和pushpushpush(将一个元素进栈) ...
- AC日记——栈 洛谷 P1044
题目背景 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈). 栈的重要性不言自明,任何 ...
- 洛谷 P1573 栈的操作
题目描述 现在有四个栈,其中前三个为空,第四个栈从栈顶到栈底分别为1,2,3,-,n.每一个栈只支持一种操作:弹出并压入.它指的是把其中一个栈A的栈顶元素x弹出,并马上压入任意一个栈B中.但是这样的操 ...
- 洛谷P1573 栈的操作 [2017年6月计划 数论11]
P1573 栈的操作 题目描述 现在有四个栈,其中前三个为空,第四个栈从栈顶到栈底分别为1,2,3,…,n.每一个栈只支持一种操作:弹出并 压入.它指的是把其中一个栈A的栈顶元素x弹出,并马上压入任意 ...
随机推荐
- java超强分页标签演示
最近在做一个项目,用到了一个分页,于是动手写了个分页标签,先将代码贴出来,供大家交流,写的不好,请见谅!. 以下是java标签类,继承自SimpleTagSupport package com.lyn ...
- windows远程连接失败问题排查思路
一般情况下,对WIN7的远程连接只需要5步即可完成远程连接的设置: 1).用户是否设置了密码 2).计算机属性-允许远程登录 3).设置计算机永不睡眠 4).关闭防火墙或者设置入站规则 5).排查Re ...
- LintCode-50.数组剔除元素后的乘积
数组剔除元素后的乘积 给定一个整数数组A. 定义B[i] = A[0] * ... * A[i-1] * A[i+1] * ... * A[n-1], 计算B的时候请不要使用除法. 样例 给出A=[1 ...
- 利用闭包判断Dom元素和滚动条的方向
本文收集整理自网上. 一,判断滚动条的方向,利用闭包首先保存滚动条的位置,然后当滚动时候不断更新滚动初始值,然后通过差指判断方向 function scroll(fn) { //利用闭包判断滚动条滚动 ...
- 播放MP3
播放背景音乐 上文来自:http://blog.csdn.net/henulwj/article/details/8977738 using System; using System.Collecti ...
- WASM
WASM WebAssembly https://webassembly.org/ https://github.com/appcypher/awesome-wasm-langs https://me ...
- WPF以access为数据库,简单实现一个显示数据和更新数据的实例
做一个小实例,如下图,
- android四大组件(一)Activity
一.创建一个新的Activity 1.android的四大组件都要在清单文件里面配置 2.如果想让你的应用有多个启动图标,你的activity需要这样配置 <intent-filter> ...
- BZOJ 1040 骑士(环套树DP)
如果m=n-1,显然这就是一个经典的树形dp. 现在是m=n,这是一个环套树森林,破掉这个环后,就成了一个树,那么这条破开的边连接的两个顶点不能同时选择.我们可以对这两个点进行两次树形DP根不选的情况 ...
- 【bzoj1096】[ZJOI2007]仓库建设 斜率优化dp
题目描述 L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L ...