题目链接

Problem Description

据说在很久很久以前,可怜的兔子经历了人生中最大的打击——赛跑输给乌龟后,心中郁闷,发誓要报仇雪恨,于是躲进了杭州下沙某农业园卧薪尝胆潜心修炼,终于练成了绝技,能够毫不休息得以恒定的速度(VR m/s)一直跑。兔子一直想找机会好好得教训一下乌龟,以雪前耻。

最近正值HDU举办50周年校庆,社会各大名流齐聚下沙,兔子也趁此机会向乌龟发起挑战。虽然乌龟深知获胜希望不大,不过迫于舆论压力,只能接受挑战。

比赛是设在一条笔直的道路上,长度为L米,规则很简单,谁先到达终点谁就算获胜。

无奈乌龟自从上次获胜以后,成了名龟,被一些八卦杂志称为“动物界的刘翔”,广告不断,手头也有了不少积蓄。为了能够再赢兔子,乌龟不惜花下血本买了最先进的武器——“"小飞鸽"牌电动车。这辆车在有电的情况下能够以VT1 m/s的速度“飞驰”,可惜电池容量有限,每次充满电最多只能行驶C米的距离,以后就只能用脚来蹬了,乌龟用脚蹬时的速度为VT2 m/s。更过分的是,乌龟竟然在跑道上修建了很多很多(N个)的供电站,供自己给电动车充电。其中,每次充电需要花费T秒钟的时间。当然,乌龟经过一个充电站的时候可以选择去或不去充电。

比赛马上开始了,兔子和带着充满电的电动车的乌龟并列站在起跑线上。你的任务就是写个程序,判断乌龟用最佳的方案进军时,能不能赢了一直以恒定速度奔跑的兔子。

Input

本题目包含多组测试,请处理到文件结束。每个测试包括四行:

第一行是一个整数L代表跑道的总长度

第二行包含三个整数N,C,T,分别表示充电站的个数,电动车冲满电以后能行驶的距离以及每次充电所需要的时间

第三行也是三个整数VR,VT1,VT2,分别表示兔子跑步的速度,乌龟开电动车的速度,乌龟脚蹬电动车的速度

第四行包含了N(N<=100)个整数p1,p2...pn,分别表示各个充电站离跑道起点的距离,其中0<p1<p2<...<pn<L

其中每个数都在32位整型范围之内。

Output

当乌龟有可能赢的时候输出一行 “What a pity rabbit!"。否则输出一行"Good job,rabbit!";

题目数据保证不会出现乌龟和兔子同时到达的情况。

Sample Input

100
3 20 5
5 8 2
10 40 60
100
3 60 5
5 8 2
10 40 60

Sample Output

Good job,rabbit!
What a pity rabbit!

分析:

一道经典的动态规划题

按照龟停站与不停站的时间比小为动态转移方程,进行建立一张动态规划表,然后得出结果。

代码:

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
int N,i,j;
double L,C,T,VR,VT1,VT2;
while(~scanf("%lf",&L))
{
double dp[105];
double a[105];
scanf("%d%lf%lf",&N,&C,&T);
scanf("%lf%lf%lf",&VR,&VT1,&VT2);
for(i=1; i<=N; i++)
scanf("%lf",&a[i]);
a[0]=0;
a[N+1]=L;
double t1,t2;
for(i=1; i<=N+1; i++)
{
t2=0x3f3f3f3f;
for(j=0; j<i; j++)
{
if((a[i]-a[j])>C)
{
t1=C/VT1+(a[i]-a[j]-C)/VT2;
}
else
t1=(a[i]-a[j])/VT1;
if(j!=0)
t1+=T;
t2=min(t2,t1+dp[j]);
}
dp[i]=t2;
}
if(dp[N+1]>(L/VR))
printf("Good job,rabbit!\n");
else
printf("What a pity rabbit!\n");
}
return 0;
}

HDU 2059 龟兔赛跑 (dp)的更多相关文章

  1. hdu 2059 龟兔赛跑 (dp)

    /* 把起点和终点比作加油站,那总共同拥有n+2个加油站了, 每次都求出从第0个到第j个加油站(j<i)分别在加满油的情况下到第i个加油站的最短时间dp[i], 终于的dp[n+1]就是最优解了 ...

  2. hdu 2059 龟兔赛跑(动态规划DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2059 龟兔赛跑 Time Limit: 1000/1000 MS (Java/Others)    M ...

  3. hdu 2059 龟兔赛跑(dp)

    龟兔赛跑 Problem Description 据说在很久很久以前,可怜的兔子经历了人生中最大的打击——赛跑输给乌龟后,心中郁闷,发誓要报仇雪恨,于是躲进了杭州下沙某农业园卧薪尝胆潜心修炼,终于练成 ...

  4. HDU 2059 龟兔赛跑(超级经典的线性DP,找合适的j,使得每个i的状态都是最好的)

    龟兔赛跑 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status ...

  5. hdu 2059:龟兔赛跑(动态规划 DP)

    龟兔赛跑 Time Limit : 1000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submissi ...

  6. HDU - 2059 龟兔赛跑(多阶段决策dp)

    http://acm.hdu.edu.cn/showproblem.php?pid=2059 初始把起点和终点也算做充电站,设dp[i]是到第i个充电站的最短时间,那么dp[n+1]即是乌龟到达终点的 ...

  7. HDU 2059 龟兔赛跑(动态规划)

    龟兔赛跑 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  8. HDU 2056 龟兔赛跑 (DP)

    题意:见题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2059 解题报告:以前一直没看出来这题是个DP题,知道是DP题就简单了 .首先要把起点和终点看成 ...

  9. 题解报告:hdu 2059 龟兔赛跑

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2059 Problem Description 据说在很久很久以前,可怜的兔子经历了人生中最大的打击—— ...

随机推荐

  1. C# 执行bat文件

    private void RunBat(string batPath) { Process pro = new Process(); FileInfo file = new FileInfo(batP ...

  2. SVM之对偶问题

    SVM之问题形式化 >>>SVM之对偶问题 SVM之核函数 SVM之解决线性不可分 写在SVM之前——凸优化与对偶问题 前一篇SVM之问题形式化中将最大间隔分类器形式化为以下优化问题 ...

  3. vuex介绍--一篇看懂vuejs的状态管理神器

    原文,请点击此链接http://www.ituring.com.cn/article/273487

  4. 关于&$地址传递的练习

    php默认为传值传递: 既: $a=10;$b=$a; //$b为10$a=+10; //$a 为20 echo $a.'和'.$b;  # $a is 20 and $b is 10! 要是想变为地 ...

  5. vue-cli项目里npm安装使用elementUI

    第一步:进入到项目目录里 npm i element-ui -S 第二步:在main.js中引入 import ElementUI from 'element-ui' import 'element- ...

  6. 网络编程--System.Net

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  7. PHP中Session和Cookie的探究

    一.Session (1)Session的由来以及介绍 Session:在计算机中,尤其是在网络应用中,称为“会话控制”,生存时间为用户在浏览某个网站时,从进入网站到关闭这个网站所经过的这段时间,也就 ...

  8. 再看perf是如何通过dwarf处理栈帧的

    从结构体stack_dump入手, util/unwind-libunwind-local.c 中有函数access_mem #0 access_mem (as=0x1f65bd0, addr=140 ...

  9. [剑指Offer] 63.数据流中的中位数

    题目描述 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值.如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值. c ...

  10. [计算机网络] 互联网协议栈(TCP/IP参考模型)各层的主要功能及相应协议

    应用层:提供用户与网络间的接口.----HTTP.FTP.SMTP 运输层:进程到进程间的数据传输.---TCP.UDP 网络层:主机到主机之间的数据传输.---IP.选路协议 数据链路层:相邻结点之 ...