Description

1.区间加 \(z\)

2.区间覆盖为 \(z\)

3.查询区间最大值

4.查询区间历史最大值

Solution

线段树维护历史最值,思想大致是维护标记出现过的最大值

考虑这种情况:

\(x\) 点下方标记,会把儿子的标记给覆盖掉,而儿子的儿子如果有了这个标记就会成为最大值,会影响最终结果

那么我们把标记下放的过程中维护的标记取个 \(max\) 再下放就行了

所以维护四个东西,历史最大值 \(nt\),当前最大值\(pt\),历史最大标记\(lap\),当前标记\(lan\)

每个标记用二元组 \((add,replace)\) 来表示

那么把 \(b\) 合并到 \(a\) 上就是: \((a.x+b.x,max(a.y+b.x,b.y))\)

把标记取 \(max\) 实际上把两维分别取 \(max\)

加法操作就是 \((z,-inf)\) ,覆盖操作就是 \((-inf,z)\)

#include<bits/stdc++.h>
#define ls (o<<1)
#define rs (o<<1|1)
using namespace std;
template<class T>void gi(T &x){
int f;char c;
for(f=1,c=getchar();c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c<='9'&&c>='0';c=getchar())x=x*10+(c&15);x*=f;
}
const int N=1e5+10,inf=1e9;
struct data{
int x,y;
data(){}
data(int _x,int _y){x=_x;y=_y;}
inline data operator +(const data &p){
return data(max(x+p.x,-inf),max(y+p.x,p.y));}
inline data operator ^(const data &p){return data(max(x,p.x),max(y,p.y));}
inline bool operator ==(const data &p){return x==p.x&&y==p.y;}
}lan[N*4],lap[N*4],w=data(0,-inf);
int n,Q,nt[N*4],pt[N*4],x,y,z;char s[2];
inline void upd(int o){nt[o]=max(nt[ls],nt[rs]),pt[o]=max(pt[ls],pt[rs]);}
inline void build(int l,int r,int o){
lan[o]=lap[o]=w;
if(l==r){gi(nt[o]);pt[o]=nt[o];return ;}
int mid=(l+r)>>1;
build(l,mid,ls);build(mid+1,r,rs);
upd(o);
}
inline void pushdown(int o){
if(lan[o]==w && lap[o]==w)return ;
for(int i=ls;i<=rs;i++){
lap[i]=lap[i]^(lan[i]+lap[o]);
lan[i]=lan[i]+lan[o];
pt[i]=max(pt[i],max(lap[o].x+nt[i],lap[o].y));
nt[i]=max(nt[i]+lan[o].x,lan[o].y);
}
lan[o]=lap[o]=w;
}
inline void mdf(int l,int r,int o,int sa,int se){
if(sa<=l && r<=se){
data t;
if(s[0]=='P')t=data(z,-inf);
else t=data(-inf,z);
nt[o]=max(nt[o]+t.x,t.y);
pt[o]=max(pt[o],nt[o]);
lan[o]=lan[o]+t;
lap[o]=lap[o]^lan[o];
return ;
}
pushdown(o);
int mid=(l+r)>>1;
if(se<=mid)mdf(l,mid,ls,sa,se);
else if(sa>mid)mdf(mid+1,r,rs,sa,se);
else mdf(l,mid,ls,sa,mid),mdf(mid+1,r,rs,mid+1,se);
upd(o);
}
inline int qry(int l,int r,int o,int sa,int se){
if(sa<=l && r<=se)return s[0]=='Q'?nt[o]:pt[o];
pushdown(o);
int mid=(l+r)>>1;
if(se<=mid)return qry(l,mid,ls,sa,se);
if(sa>mid)return qry(mid+1,r,rs,sa,se);
return max(qry(l,mid,ls,sa,mid),qry(mid+1,r,rs,mid+1,se));
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
cin>>n;
build(1,n,1);
cin>>Q;
while(Q--){
scanf("%s%d%d",s,&x,&y);
if(s[0]=='Q'||s[0]=='A')printf("%d\n",qry(1,n,1,x,y));
else gi(z),mdf(1,n,1,x,y);
}
return 0;
}

bzoj 3064: Tyvj 1518 CPU监控的更多相关文章

  1. 3064: Tyvj 1518 CPU监控

    注意这题要维护历史最大加和历史最大覆盖 /************************************************************** Problem: 3064 Us ...

  2. [补档][Tyvj 1518]CPU监控

    [Tyvj 1518]CPU监控 题目 Bob需要一个程序来监视CPU使用率.这是一个很繁琐的过程,为了让问题更加简单,Bob会慢慢列出今天会在用计算机时做什么事. Bob会干很多事,除了跑暴力程序看 ...

  3. bzoj3064 Tyvj 1518 CPU监控

    Description Bob需要一个程序来监视CPU使用率.这是一个很繁琐的过程,为了让问题更加简单,Bob会慢慢列出今天会在用计算机时做什么事. Bob会干很多事,除了跑暴力程序看视频之外,还会做 ...

  4. 【bzoj3064】Tyvj 1518 CPU监控 线段树维护历史最值

    题目描述 给你一个序列,支持4种操作:1.查询区间最大值:2.查询区间历史最大值:3.区间加:4.区间赋值. 输入 第一行一个正整数T,表示Bob需要监视CPU的总时间. 然后第二行给出T个数表示在你 ...

  5. Tyvj 1518 CPU监控(线段树)

    题目描述: Bob需要一个程序来监视CPU使用率.这是一个很繁琐的过程,为了让问题更加简单,Bob会慢慢列出今天会在用计算机时做什么事. Bob会干很多事,除了跑暴力程序看视频之外,还会做出去玩玩和用 ...

  6. Tyvj 1518 CPU监控——极恶线段树

    题目大意: 给定一个区间及其各个元素的初值,要求支持如下操作: 1.区间加 2.区间赋值 3.查询区间最大值 4.查询区间历史最大值 分析: 容易想到线段树,但是细思恶极(仔细想想恶心到了极点)的是, ...

  7. BZOJ3064 Tyvj 1518 CPU监控 线段树

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3064 题意概括 一个序列,要你支持以下操作: 1. 区间询问最大值 2. 区间询问历史最大值 3. ...

  8. 2018.07.27 bzoj3064: Tyvj 1518 CPU监控(线段树)

    传送门 线段树好题. 维护区间加,区间覆盖,区间最大,区间历史最大. 这个东西在国家集训队2016论文集之<区间最值操作与历史最值问题--杭州学军中学 吉如一>中讲的已经很详细了. 简单来 ...

  9. BZOJ 3064 CPU监控

    题目链接:CPU监控 学习一番线段树的历史标记- 这道题就是区间加法,区间赋值,要询问区间最大值 和 区间历史最大值的最大值. 然后这种题就是在现有标记的基础上多弄一套标记,维护这个点出现过的最大的标 ...

随机推荐

  1. python - seletors实现IO多路复用

    服务端 from socket import * import selectors sel = selectors.DefaultSelector() def accept(server_fileob ...

  2. 编写高质量JS代码上

    想写出高效的javascript类库却无从下手: 尝试阅读别人的类库,却理解得似懂给懂: 打算好好钻研js高级函数,但权威书上的内容太零散, 即使记住“用法”,但到要“用”的时候却没有想“法”. 也许 ...

  3. zabbix前端添加平台脚本监控

    1.在前端创建脚本 2.添加监控配置 # 这里添加的监控为ping命令,用来探测网络的可用性. # 这里添加的监控为traceroute命令,用来探测网络的可用性. # 这里添加的监控为nmap命令, ...

  4. [To Selina] 《撒野》读后感

  5. HTML5中本地储存概念是什么,什么优点 ,与cookie有什么区别?

    html5中的Web Storage 包括了两种存储方式: sessionStorage  和  localStorage. seessionStorage 用于本地存储一个会话(session)中的 ...

  6. 数据库管理工具navicat基本使用方法——以MySql为例

    mysq数据库管理工具navicat基本使用方法 https://www.cnblogs.com/neuedu/p/5876874.html

  7. 关于jxl的getCellFormat()方法获取表格样式----中文货币乱码

    File templateFile = getTempalte(client.getSc_shortName());//这里读取模板文件 WorkbookSettings set1 = new Wor ...

  8. 缩点 CF893C Rumor

    CF893C Rumor 有n个人,其中有m对朋友,现在你有一个秘密你想告诉所有人,第i个人愿意出价a[i]买你的秘密,获得秘密的人会免费告诉它的所有朋友(他朋友的朋友也会免费知道),现在他们想出最少 ...

  9. css加载顺序

    最近发现个有意思的事情,印象中的是css中class后面会覆盖前面的, 于是写了代码 div{ width: 100px; height: 100px; } .red{ background-colo ...

  10. Machine learning 吴恩达第二周coding作业(必做题)

    1.warmUpExercise: function A = warmUpExercise() %WARMUPEXERCISE Example function in octave % A = WAR ...