有很多方法用来集体计算DataFrame的描述性统计信息和其他相关操作。 其中大多数是sum()mean()等聚合函数,但其中一些,如sumsum(),产生一个相同大小的对象。 一般来说,这些方法采用轴参数,就像ndarray.{sum,std,...},但轴可以通过名称或整数来指定:

  • 数据帧(DataFrame) - “index”(axis=0,默认),columns(axis=1)

下面创建一个数据帧(DataFrame),并使用此对象进行演示本章中所有操作。

示例

import pandas as pd
import numpy as np #Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
'Lee','David','Gasper','Betina','Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])} #Create a DataFrame
df = pd.DataFrame(d)
print df
Python

执行上面示例代码,得到以下结果 -

    Age  Name   Rating
0 25 Tom 4.23
1 26 James 3.24
2 25 Ricky 3.98
3 23 Vin 2.56
4 30 Steve 3.20
5 29 Minsu 4.60
6 23 Jack 3.80
7 34 Lee 3.78
8 40 David 2.98
9 30 Gasper 4.80
10 51 Betina 4.10
11 46 Andres 3.65
Shell

sum()方法

返回所请求轴的值的总和。 默认情况下,轴为索引(axis=0)。

import pandas as pd
import numpy as np #Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
'Lee','David','Gasper','Betina','Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])} #Create a DataFrame
df = pd.DataFrame(d)
print df.sum()
Python

执行上面示例代码,得到以下结果 -

Age                                                    382
Name TomJamesRickyVinSteveMinsuJackLeeDavidGasperBe...
Rating 44.92
dtype: object
Shell

每个单独的列单独添加(附加字符串)。

axis=1示例

此语法将给出如下所示的输出,参考以下示例代码 -

import pandas as pd
import numpy as np #Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
'Lee','David','Gasper','Betina','Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])} #Create a DataFrame
df = pd.DataFrame(d)
print df.sum(1)
Python

执行上面示例代码,得到以下结果 -

0    29.23
1 29.24
2 28.98
3 25.56
4 33.20
5 33.60
6 26.80
7 37.78
8 42.98
9 34.80
10 55.10
11 49.65
dtype: float64
Shell

mean()示例
返回平均值,参考以下示例代码 -

import pandas as pd
import numpy as np #Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
'Lee','David','Gasper','Betina','Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])} #Create a DataFrame
df = pd.DataFrame(d)
print df.mean()
Python

执行上面示例代码,得到以下结果 -

Age       31.833333
Rating 3.743333
dtype: float64
Shell

std()示例

返回数字列的Bressel标准偏差。

import pandas as pd
import numpy as np #Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
'Lee','David','Gasper','Betina','Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])} #Create a DataFrame
df = pd.DataFrame(d)
print df.std()
Python

执行上面示例代码,得到以下结果 -

Age       9.232682
Rating 0.661628
dtype: float64
Shell

函数和说明

下面来了解Python Pandas中描述性统计信息的函数,下表列出了重要函数 -

编号 函数 描述
1 count() 非空观测数量
2 sum() 所有值之和
3 mean() 所有值的平均值
4 median() 所有值的中位数
5 mode() 值的模值
6 std() 值的标准偏差
7 min() 所有值中的最小值
8 max() 所有值中的最大值
9 abs() 绝对值
10 prod() 数组元素的乘积
11 cumsum() 累计总和
12 cumprod() 累计乘积

注 - 由于DataFrame是异构数据结构。通用操作不适用于所有函数。

  • 类似于:sum()cumsum()函数能与数字和字符(或)字符串数据元素一起工作,不会产生任何错误。字符聚合从来都比较少被使用,虽然这些函数不会引发任何异常。
  • 由于这样的操作无法执行,因此,当DataFrame包含字符或字符串数据时,像abs()cumprod()这样的函数会抛出异常。

汇总数据

describe()函数是用来计算有关DataFrame列的统计信息的摘要。

import pandas as pd
import numpy as np #Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
'Lee','David','Gasper','Betina','Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])} #Create a DataFrame
df = pd.DataFrame(d)
print df.describe()
Python

执行上面示例代码,得到以下结果 -

               Age         Rating
count 12.000000 12.000000
mean 31.833333 3.743333
std 9.232682 0.661628
min 23.000000 2.560000
25% 25.000000 3.230000
50% 29.500000 3.790000
75% 35.500000 4.132500
max 51.000000 4.800000
Shell

该函数给出了平均值,标准差和IQR值。 而且,函数排除字符列,并给出关于数字列的摘要。 include是用于传递关于什么列需要考虑用于总结的必要信息的参数。获取值列表; 默认情况下是”数字值”。

  • object - 汇总字符串列
  • number - 汇总数字列
  • all - 将所有列汇总在一起(不应将其作为列表值传递)

现在,在程序中使用以下语句并检查输出 -

import pandas as pd
import numpy as np #Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
'Lee','David','Gasper','Betina','Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])} #Create a DataFrame
df = pd.DataFrame(d)
print df.describe(include=['object'])
Python

执行上面示例代码,得到以下结果 -

          Name
count 12
unique 12
top Ricky
freq 1
Shell

现在,使用以下语句并查看输出 -

import pandas as pd
import numpy as np #Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
'Lee','David','Gasper','Betina','Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])} #Create a DataFrame
df = pd.DataFrame(d)
print df. describe(include='all')
Shell

执行上面示例代码,得到以下结果 -

          Age          Name       Rating
count 12.000000 12 12.000000
unique NaN 12 NaN
top NaN Ricky NaN
freq NaN 1 NaN
mean 31.833333 NaN 3.743333
std 9.232682 NaN 0.661628
min 23.000000 NaN 2.560000
25% 25.000000 NaN 3.230000
50% 29.500000 NaN 3.790000
75% 35.500000 NaN 4.132500
max 51.000000 NaN 4.800000

Pandas描述性统计的更多相关文章

  1. Lesson6——Pandas Pandas描述性统计

    1 简介 描述统计学(descriptive statistics)是一门统计学领域的学科,主要研究如何取得反映客观现象的数据,并以图表形式对所搜集的数据进行处理和显示,最终对数据的规律.特征做出综合 ...

  2. Pandas | 06 描述性统计

    有很多方法用来集体计算DataFrame的描述性统计信息和其他相关操作. 其中大多数是sum(),mean()等聚合函数. 一般来说,这些方法采用轴参数,就像ndarray.{sum,std,...} ...

  3. Pandas 之 描述性统计案例

    认识 jupyter地址: https://nbviewer.jupyter.org/github/chenjieyouge/jupyter_share/blob/master/share/panda ...

  4. pandas(5):数学统计——描述性统计

    Pandas 可以对 Series 与 DataFrame 进行快速的描述性统计,方便快速了解数据的集中趋势和分布差异.源Excel文件descriptive_statistics.xlsx: 一.描 ...

  5. Python实现描述性统计

    该篇笔记由木东居士提供学习小组.资料 描述性统计的概念很好理解,在日常工作中我们也经常会遇到需要使用描述性统计来表述的问题.以下,我们将使用Python实现一系列的描述性统计内容. 有关python环 ...

  6. 转载,Pandas 数据统计用法

    pandas模块为我们提供了非常多的描述性统计分析的指标函数,如总和.均值.最小值.最大值等,我们来具体看看这些函数: 1.随机生成三组数据import numpy as npimport panda ...

  7. 使用Python进行描述性统计

    目录 1 描述性统计是什么?2 使用NumPy和SciPy进行数值分析 2.1 基本概念 2.2 中心位置(均值.中位数.众数) 2.3 发散程度(极差,方差.标准差.变异系数) 2.4 偏差程度(z ...

  8. \(\S1\) 描述性统计

    在认识客观世界的过程中,统计学的思想和方法经常起着不可替代的作用.在许多工程及自然科学的专业领域中,包括可靠性分析.质量控制.生物信息.脑科学.心理分析.经济分析.金融风险管理.社会科学推断.行为科学 ...

  9. 基于R语言的数据分析和挖掘方法总结——描述性统计

    1.1 方法简介 描述性统计包含多种基本描述统计量,让用户对于数据结构可以有一个初步的认识.在此所提供之统计量包含: 基本信息:样本数.总和 集中趋势:均值.中位数.众数 离散趋势:方差(标准差).变 ...

随机推荐

  1. AsyncTaskLoader设计原理大揭秘

    简介 在Android异步处理之AsyncTaskLoader简单使用中我简单的介绍了一下AsyncTaskLoader的基本用法和使用场景,对AsyncTaskLoader还不是很熟悉的小伙伴可以先 ...

  2. html常见兼容性问题

    html常见兼容性问题? 1.双边距BUG float引起的  使用display 2.3像素问题 使用float引起的 使用dislpay:inline -3px 3.超链接hover 点击后失效 ...

  3. Java IO异常处理方式

    public class IOException{ // 获取系统默认的行分隔符 private static final String LINE_SEPARATOR = System.getProp ...

  4. 用java求一个整数各位数字之和

    /* * 用java求一个整数各位数字之和 */ public class Test02 { public static void main(String[] args) { System.out.p ...

  5. java 日期的格式化 输入/输出

    想要得到形如2018.07.09的格式化好的当天日期 创建Date对象,调用SimpleDateFormat对象的format方法: indexstr="logstash-"+ne ...

  6. SQL Server 2005 临时表

    with t as ( select * from t_pub_param ) select * from t SQL Server 2005 之后才可以使用,查询后临时表t会自动删除.

  7. eclipse欺骗了我

    Java源文件(.java)和Java的字节码文件(.class)跟 package 是个什么关系? 平时使用 eclipse 的时候,发现 .java 文件目录必须和 package 包名保持一致, ...

  8. Leetcode 之 Set Mismatch

    645. Set Mismatch 1.Problem The set S originally contains numbers from 1 to n. But unfortunately, du ...

  9. FORM pdf预览功能函数 SSFCOMP_PDF_PREVIEW

     函数模块             SSFCOMP_PDF_PREVIEW Smart Forms: PDF Preview (Test) function ssfcomp_pdf_preview. ...

  10. SQL基础三

    一.SQL ORDER BY 子句 ORDER BY 语句用于对结果集进行排序,默认按照升序对记录进行排序,如果需要按照降序进行排序,需要在后面追加关键字DESC.应用如下: 原始的表:Orders表 ...