hdu 5730 Shell Necklace——多项式求逆+拆系数FFT
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5730
可以用分治FFT。但自己只写了多项式求逆。
和COGS2259几乎很像。设A(x),指数是长度,系数是方案。 \( A(x)^{k} \) 的 m 次项系数表示 k 个连续段组成长度为 m 的序列的方案数。
\( B(x)=1+F(x)+F^{2}(x)+F^{3}(x)+... \)
\( B(x) = \frac{1}{1-F(x)} \)(通过计算B(x)的逆来看出这个式子)
然后多项式求逆就行了。
注意模数 \( 313=2^{3}*3*13 \) ,原根是10,但那个 23 太小了!如果 len 大于3的话就会除出小数,所以不能直接用NTT!
那么就用FFT。FFT不能中途取模,所以最大的值是 312×312×10000=9734400000,会让FFT的精度变得很低。所以用拆系数FFT。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define db double
#define ll long long
using namespace std;
const int N=1e5+,M=(<<)+,mod=;
const db pi=acos(-);
int n,a[M],b[M],tp[M],len,r[M],base;
struct cpl{db x,y;}A[M],B[M],Ta[M],Tb[M],Tc[M],Td[M],Ini,I;
cpl operator+ (cpl a,cpl b){return (cpl){a.x+b.x,a.y+b.y};}
cpl operator- (cpl a,cpl b){return (cpl){a.x-b.x,a.y-b.y};}
cpl operator* (cpl a,cpl b){return (cpl){a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x};}
cpl cnj(cpl a){return (cpl){a.x,-a.y};}
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='') ret=ret*+ch-'',ch=getchar();
return fx?ret:-ret;
}
void upd(int &x){x>=mod?x-=mod:;}
int pw(int x,int k)
{int ret=;while(k){if(k&)ret=(ll)ret*x%mod;x=(ll)x*x%mod;k>>=;}return ret;}
void fft(cpl *a,bool fx)
{
for(int i=;i<len;i++)
if(i<r[i])swap(a[i],a[r[i]]);
for(int R=;R<=len;R<<=)
{
int m=R>>;
cpl wn=(cpl){ cos(pi/m),fx?-sin(pi/m):sin(pi/m) };
for(int i=;i<len;i+=R)
{
cpl w=I;
for(int j=;j<m;j++,w=w*wn)
{
cpl x=a[i+j], y=w*a[i+m+j];
a[i+j]=x+y; a[i+m+j]=x-y;
}
}
}
if(!fx)return;
for(int i=;i<len;i++)a[i].x/=len,a[i].y/=len;
}
void mtt(int n,int *a,int *b,int *c)
{
for(len=;len<n<<;len<<=);
for(int i=;i<len;i++)r[i]=(r[i>>]>>)+((i&)?len>>:);
for(int i=;i<n;i++)A[i]=(cpl){ a[i]/base,a[i]%base }; for(int i=n;i<len;i++)A[i]=Ini;
for(int i=;i<n;i++)B[i]=(cpl){ b[i]/base,b[i]%base }; for(int i=n;i<len;i++)B[i]=Ini;
fft(A,); fft(B,);
cpl ta,tb,tc,td;
A[len]=A[]; B[len]=B[];
for(int i=,j=len;i<len;i++,j--)
{
ta=(A[i]+cnj(A[j]))*(cpl){0.5,};
tb=(A[i]-cnj(A[j]))*(cpl){,-0.5};
tc=(B[i]+cnj(B[j]))*(cpl){0.5,};
td=(B[i]-cnj(B[j]))*(cpl){,-0.5};
Ta[i]=ta*tc; Tb[i]=ta*td; Tc[i]=tb*tc; Td[i]=tb*td;
}
A[len]=B[len]=Ini;
for(int i=;i<len;i++)A[i]=Ta[i]+Tb[i]*(cpl){,};
for(int i=;i<len;i++)B[i]=Tc[i]+Td[i]*(cpl){,};
fft(A,); fft(B,);
for(int i=,Da,Db,Dc,Dd;i<n;i++)
{
Da=(ll)(A[i].x+0.5)%mod; Db=(ll)(A[i].y+0.5)%mod;
Dc=(ll)(B[i].x+0.5)%mod; Dd=(ll)(B[i].y+0.5)%mod;
c[i]=(Da*base*base+(Db+Dc)*base+Dd)%mod+mod; upd(c[i]);
}
}
void getinv(int n,int *a,int *b)
{
if(n==){b[]=pw(a[],mod-);return;}
getinv(n+>>,a,b);
mtt(n,a,b,tp);
mtt(n,tp,b,tp);
for(int i=;i<n;i++)b[i]=((b[i]<<)-tp[i])%mod+mod,upd(b[i]);
}
int main()
{
base=sqrt(mod); I.x=;
while()
{
memset(a,,sizeof a);memset(b,,sizeof b);
n=rdn(); if(!n)return ;
for(int i=;i<=n;i++)a[i]=rdn();
for(int i=;i<=n;i++)a[i]=mod-a[i]%mod,upd(a[i]);
a[]++;
getinv(n+,a,b);
printf("%d\n",b[n]);
}
return ;
}
hdu 5730 Shell Necklace——多项式求逆+拆系数FFT的更多相关文章
- hdu 5730 Shell Necklace [分治fft | 多项式求逆]
hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...
- HDU 5730 Shell Necklace(CDQ分治+FFT)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5730 [题目大意] 给出一个数组w,表示不同长度的字段的权值,比如w[3]=5表示如果字段长度为3 ...
- HDU.5730.Shell Necklace(分治FFT)
题目链接 \(Description\) 有\(n\)个长度分别为\(1,2,\ldots,n\)的珠子串,每个有\(a_i\)种,每种个数不限.求有多少种方法组成长度为\(n\)的串.答案对\(31 ...
- hdu 5730 Shell Necklace —— 分治FFT
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5730 DP式:\( f[i] = \sum\limits_{j=1}^{i} f[i-j] * a[j] ...
- HDU 5730 - Shell Necklace
题意: 给出连续的1-n个珠子的涂色方法 a[i](1<=i<=n), 问长度为n的珠链共有多少种涂色方案 分析: 可以得到DP方程: DP[n] = ∑(i=1,n) (DP[n-i]* ...
- hdu 5730 Shell Necklace fft+cdq分治
题目链接 dp[n] = sigma(a[i]*dp[n-i]), 给出a1.....an, 求dp[n]. n为1e5. 这个式子的形式显然是一个卷积, 所以可以用fft来优化一下, 但是这样也是会 ...
- HDU 5730 Shell Necklace cdq分治+FFT
题意:一段长为 i 的项链有 a[i] 种装饰方式,问长度为n的相连共有多少种装饰方式 分析:采用dp做法,dp[i]=∑dp[j]*a[i-j]+a[i],(1<=j<=i-1) 然后对 ...
- #8 //HDU 5730 Shell Necklace(CDQ分治+FFT)
Description 给出长度分别为1~n的珠子,长度为i的珠子有a[i]种,每种珠子有无限个,问用这些珠子串成长度为n的链有多少种方案 题解: dp[i]表示组合成包含i个贝壳的项链的总方案数 转 ...
- bzoj 3456 城市规划 —— 分治FFT / 多项式求逆 / 指数型生成函数(多项式求ln)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 首先考虑DP做法,正难则反,考虑所有情况减去不连通的情况: 而不连通的情况就是那个经典 ...
随机推荐
- 什么是webhook
什么是webhook 翻译,原文地址:https://sendgrid.com/blog/webhook-vs-api-whats-difference/ 一.概述 Webhook是一个API概念,并 ...
- GIT生成 SSH Key步骤
//设置user.name和email 提交到git之后会显示用户名(在随意一个目录打开git-bash执行就行)Administrator@DESKTOP-BP3H0HS MINGW64 /d/mi ...
- nginx 中location和root、alias
nginx指定文件路径有两种方式root和alias,这两者的用法区别 root与alias主要区别在于nginx如何解释location后面的uri,这会使两者分别以不同的方式将请求映射到服务器文件 ...
- Android -- junit测试框架,logcat获取log信息
1. 相关概念 白盒测试: 知道程序源代码. 根据测试的粒度分为不同的类型 方法测试 function test 单元测试 unit test 集成 ...
- Linux集群的NTP服务器时间同步
我们搭建集群环境的时候,时间必须是要统一的,才能保证集群数据的一致性. 一般操作是直接使用NTP,跟默认的时间服务器同步,但是最好还是让所有节点跟集群中的某台作为时间服务器的节点同步. 步骤:(节点有 ...
- FZU 1759 Super A^B mod C 指数循环节
Problem 1759 Super A^B mod C Time Limit: 1000 mSec Memory Limit : 32768 KB Problem Description G ...
- 异步编程——promise
异步编程--promise 定义 Promise是异步编程的一个解决方案,相比传统的解决方法--回调函数,使用Promise更为合理和强大,避免了回调函数之间的层层嵌套,也使得代码结构更为清晰,便于维 ...
- mvvm2
1:设计模式 在MVP模式中,为了让UI层能够从逻辑层上分离下来,设计师们在UI层与逻辑层之间加了一层interface.无论是UI开发人员还是数据开发人员,都要尊重这个契约.按照它进行设计和开发.这 ...
- SSL HTTPS 生成证书
SSL HTTPS 一.生成服务器私钥.公钥 $ openssl genrsa -out server.key 2048 $ openssl rsa -in server.key -pubout -o ...
- 三 web爬虫,scrapy模块介绍与使用
Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架. 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中.其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以 ...