《Deep Residual Learning for Image Recognition》是2016年 kaiming大神CVPR的最佳论文

原文:http://m.blog.csdn.net/justpsss/article/details/77103077

摘要

resNet主要解决一个问题,就是更深的神经网络如何收敛的问题,为了解决这个问题,论文提出了一个残差学习的框架。然后简单跟VGG比较了一下,152层的残差网络,比VGG深了8倍,但是比VGG复杂度更低,当然在ImageNet上的表现肯定比VGG更好,是2015年ILSVRC分类任务的冠军。

另外用resNet作为预训练模型的检测和分割效果也要更好,这个比较好理解,分类效果提升必然带来检测和分割的准确性提升。

介绍

在resNet之前,随着网络层数的增加,收敛越来越难,大家通常把其原因归结为梯度消失或者梯度爆炸,这是不对的。另外当训练网络的时候,也会有这样一个问题,当网络层数加深的时候,准确率可能会快速的下降,这当然也不是由过拟合导致的。我们可以这样理解,构造一个深度模型,我们把新加的层叫做identity mapping(这个mapping实在不知道怎么翻译好,尴尬……),而其他层从学好的浅层模型复制过来。现在我们需要保证这个构造的深度模型并不会比之前的浅层模型产生更高的训练错误,然而目前并没有好的比较方法。

从图上可以看到,层数越多,收敛越慢,且error更高。

在论文中,kaiming大佬提出了一个深度残差学习框架来解决网络加深之后准确率下降的问题。用公式来表示,假如我们需要的理想的mapping定义为H(x),那么我们新加的非线性层就是F(x):=H(x)−x,原始的mapping就从x变成了F(x)+x。也就是说,如果我们之前的x是最优的,那么新加的identity mapping F(x)就应该都是0,而不会是其他的值。

这样整个残差网络是端对端(end-to-end)的,可以通过随机梯度下降反向传播,而且实现起来很简单(实际上就是两层求和,在Caffe中用Eltwise层实现)。至于它为什么收敛更快,error更低,我是这么理解的:

我们知道随机梯度下降就是用的链式求导法则,我们对H(x)求导,相当于对F(x)+x求导,那么这个梯度值就会在1附近(x的导数是1),相比之前的plain网络,自然收敛更快。

深度残差学习

假设多个线性和非线性的组合层可以近似任意复杂函数(这是一个开放性的问题),那么当然也可以逼近残差函数H(x)−x(假设输入和输出的维度相同)。

论文中残差模块定义为:

y=F(x,wi)+x

其中,x代表输入,y代表输出,F(x,wi)代表需要学习的残差mapping。像上图firgure 2有两层网络,用F=W2σ(W1x)表示,这里σ表示ReLU激活层。这里Wx是卷积操作,是线性的,ReLU是非线性的。

其中x和F的维度一定要相同,如果不同的话,可以通过一个线性映射Ws来匹配维度:

y=F(x,Wi)+Wsx

这里F是比较灵活的,可以包含两层或者三层,甚至更多层。但是如果只有一层的话,就变成了y=Wix+x,这就是普通的线性函数了,就没有意义了。

接下来就是按照这个思路将网络结构加深了,下面列出几种结构:

最后是一个更深的瓶颈结构问题,论文中用三个1x1,3x3,1x1的卷积层代替前面说的两个3x3卷积层,第一个1x1用来降低维度,第三个1x1用来增加维度,这样可以保证中间的3x3卷积层拥有比较小的输入输出维度。

好了,resNet读到这里基本上差不多了,当然啦,后来又出了resNet的加宽版resNeXt,借鉴了GoogLeNet的思想,以后有机会再细读

最后附图:ResNet-20 和ResNet-50 模型结构,由于模型太大,图像显示不清晰,这里只黏贴很小的一部分:

name: "resnet20_cifar10"
layer {
name: "Input1"
type: "Input"
top: "data"
input_param {
shape {
dim:
dim:
dim:
dim:
}
}
} layer {
name: "conv_0"
type: "Convolution"
bottom: "data"
top: "conv_0"
param {
lr_mult: 1.0
decay_mult: 2.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
}
layer {
name: "norm_0"
type: "BatchNorm"
bottom: "conv_0"
top: "conv_0"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
use_global_stats: true
moving_average_fraction: 0.95
}
}
layer {
name: "scale_0"
type: "Scale"
bottom: "conv_0"
top: "conv_0"
scale_param {
bias_term: true
}
}
layer {
name: "relu_0"
type: "ReLU"
bottom: "conv_0"
top: "conv_0"
}
layer {
name: "conv_1"
type: "Convolution"
bottom: "conv_0"
top: "conv_1"
param {
lr_mult: 1.0
decay_mult: 2.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
}
layer {
name: "norm_1"
type: "BatchNorm"
bottom: "conv_1"
top: "conv_1"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
use_global_stats: true
moving_average_fraction: 0.95
}
}
layer {
name: "scale_1"
type: "Scale"
bottom: "conv_1"
top: "conv_1"
scale_param {
bias_term: true
}
}
layer {
name: "relu_1"
type: "ReLU"
bottom: "conv_1"
top: "conv_1"
}
layer {
name: "conv_2"
type: "Convolution"
bottom: "conv_1"
top: "conv_2"
param {
lr_mult: 1.0
decay_mult: 2.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
}
layer {
name: "norm_2"
type: "BatchNorm"
bottom: "conv_2"
top: "conv_2"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
use_global_stats: true
moving_average_fraction: 0.95
}
}
layer {
name: "scale_2"
type: "Scale"
bottom: "conv_2"
top: "conv_2"
scale_param {
bias_term: true
}
}
layer {
name: "elem_2"
type: "Eltwise"
bottom: "conv_2"
bottom: "conv_0"
top: "elem_2"
eltwise_param {
operation: SUM
}
} layer {
name: "conv_3"
type: "Convolution"
bottom: "elem_2"
top: "conv_3"
param {
lr_mult: 1.0
decay_mult: 2.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
}
layer {
name: "norm_3"
type: "BatchNorm"
bottom: "conv_3"
top: "conv_3"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
use_global_stats: true
moving_average_fraction: 0.95
}
}
layer {
name: "scale_3"
type: "Scale"
bottom: "conv_3"
top: "conv_3"
scale_param {
bias_term: true
}
}
layer {
name: "relu_3"
type: "ReLU"
bottom: "conv_3"
top: "conv_3"
}
layer {
name: "conv_4"
type: "Convolution"
bottom: "conv_3"
top: "conv_4"
param {
lr_mult: 1.0
decay_mult: 2.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
}
layer {
name: "norm_4"
type: "BatchNorm"
bottom: "conv_4"
top: "conv_4"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
use_global_stats: true
moving_average_fraction: 0.95
}
}
layer {
name: "scale_4"
type: "Scale"
bottom: "conv_4"
top: "conv_4"
scale_param {
bias_term: true
}
}
layer {
name: "elem_4"
type: "Eltwise"
bottom: "conv_4"
bottom: "elem_2"
top: "elem_4"
eltwise_param {
operation: SUM
}
} layer {
name: "conv_5"
type: "Convolution"
bottom: "elem_4"
top: "conv_5"
param {
lr_mult: 1.0
decay_mult: 2.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
}
layer {
name: "norm_5"
type: "BatchNorm"
bottom: "conv_5"
top: "conv_5"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
use_global_stats: true
moving_average_fraction: 0.95
}
}
layer {
name: "scale_5"
type: "Scale"
bottom: "conv_5"
top: "conv_5"
scale_param {
bias_term: true
}
}
layer {
name: "relu_5"
type: "ReLU"
bottom: "conv_5"
top: "conv_5"
}
layer {
name: "conv_6"
type: "Convolution"
bottom: "conv_5"
top: "conv_6"
param {
lr_mult: 1.0
decay_mult: 2.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
}
layer {
name: "norm_6"
type: "BatchNorm"
bottom: "conv_6"
top: "conv_6"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
use_global_stats: true
moving_average_fraction: 0.95
}
}
layer {
name: "scale_6"
type: "Scale"
bottom: "conv_6"
top: "conv_6"
scale_param {
bias_term: true
}
}
layer {
name: "elem_6"
type: "Eltwise"
bottom: "conv_6"
bottom: "elem_4"
top: "elem_6"
eltwise_param {
operation: SUM
}
} layer {
name: "conv_7"
type: "Convolution"
bottom: "elem_6"
top: "conv_7"
param {
lr_mult: 1.0
decay_mult: 2.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
}
layer {
name: "norm_7"
type: "BatchNorm"
bottom: "conv_7"
top: "conv_7"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
use_global_stats: true
moving_average_fraction: 0.95
}
}
layer {
name: "scale_7"
type: "Scale"
bottom: "conv_7"
top: "conv_7"
scale_param {
bias_term: true
}
}
layer {
name: "relu_7"
type: "ReLU"
bottom: "conv_7"
top: "conv_7"
}
layer {
name: "conv_8"
type: "Convolution"
bottom: "conv_7"
top: "conv_8"
param {
lr_mult: 1.0
decay_mult: 2.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
}
layer {
name: "norm_8"
type: "BatchNorm"
bottom: "conv_8"
top: "conv_8"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
use_global_stats: true
moving_average_fraction: 0.95
}
}
layer {
name: "scale_8"
type: "Scale"
bottom: "conv_8"
top: "conv_8"
scale_param {
bias_term: true
}
} layer {
name: "proj_7"
type: "Convolution"
bottom: "elem_6"
top: "proj_7"
param {
lr_mult: 1.0
decay_mult: 2.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
}
layer {
name: "proj_norm_7"
type: "BatchNorm"
bottom: "proj_7"
top: "proj_7"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
use_global_stats: true
moving_average_fraction: 0.95
}
}
layer {
name: "proj_scale_7"
type: "Scale"
bottom: "proj_7"
top: "proj_7"
scale_param {
bias_term: true
}
} layer {
name: "elem_8"
type: "Eltwise"
bottom: "conv_8"
bottom: "proj_7"
top: "elem_8"
eltwise_param {
operation: SUM
}
} layer {
name: "conv_9"
type: "Convolution"
bottom: "elem_8"
top: "conv_9"
param {
lr_mult: 1.0
decay_mult: 2.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
}
layer {
name: "norm_9"
type: "BatchNorm"
bottom: "conv_9"
top: "conv_9"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
use_global_stats: true
moving_average_fraction: 0.95
}
}
layer {
name: "scale_9"
type: "Scale"
bottom: "conv_9"
top: "conv_9"
scale_param {
bias_term: true
}
}
layer {
name: "relu_9"
type: "ReLU"
bottom: "conv_9"
top: "conv_9"
}
layer {
name: "conv_10"
type: "Convolution"
bottom: "conv_9"
top: "conv_10"
param {
lr_mult: 1.0
decay_mult: 2.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
}
layer {
name: "norm_10"
type: "BatchNorm"
bottom: "conv_10"
top: "conv_10"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
use_global_stats: true
moving_average_fraction: 0.95
}
}
layer {
name: "scale_10"
type: "Scale"
bottom: "conv_10"
top: "conv_10"
scale_param {
bias_term: true
}
}
layer {
name: "elem_10"
type: "Eltwise"
bottom: "conv_10"
bottom: "elem_8"
top: "elem_10"
eltwise_param {
operation: SUM
}
} layer {
name: "conv_11"
type: "Convolution"
bottom: "elem_10"
top: "conv_11"
param {
lr_mult: 1.0
decay_mult: 2.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
}
layer {
name: "norm_11"
type: "BatchNorm"
bottom: "conv_11"
top: "conv_11"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
use_global_stats: true
moving_average_fraction: 0.95
}
}
layer {
name: "scale_11"
type: "Scale"
bottom: "conv_11"
top: "conv_11"
scale_param {
bias_term: true
}
}
layer {
name: "relu_11"
type: "ReLU"
bottom: "conv_11"
top: "conv_11"
}
layer {
name: "conv_12"
type: "Convolution"
bottom: "conv_11"
top: "conv_12"
param {
lr_mult: 1.0
decay_mult: 2.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
}
layer {
name: "norm_12"
type: "BatchNorm"
bottom: "conv_12"
top: "conv_12"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
use_global_stats: true
moving_average_fraction: 0.95
}
}
layer {
name: "scale_12"
type: "Scale"
bottom: "conv_12"
top: "conv_12"
scale_param {
bias_term: true
}
}
layer {
name: "elem_12"
type: "Eltwise"
bottom: "conv_12"
bottom: "elem_10"
top: "elem_12"
eltwise_param {
operation: SUM
}
} layer {
name: "conv_13"
type: "Convolution"
bottom: "elem_12"
top: "conv_13"
param {
lr_mult: 1.0
decay_mult: 2.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
}
layer {
name: "norm_13"
type: "BatchNorm"
bottom: "conv_13"
top: "conv_13"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
use_global_stats: true
moving_average_fraction: 0.95
}
}
layer {
name: "scale_13"
type: "Scale"
bottom: "conv_13"
top: "conv_13"
scale_param {
bias_term: true
}
}
layer {
name: "relu_13"
type: "ReLU"
bottom: "conv_13"
top: "conv_13"
}
layer {
name: "conv_14"
type: "Convolution"
bottom: "conv_13"
top: "conv_14"
param {
lr_mult: 1.0
decay_mult: 2.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
}
layer {
name: "norm_14"
type: "BatchNorm"
bottom: "conv_14"
top: "conv_14"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
use_global_stats: true
moving_average_fraction: 0.95
}
}
layer {
name: "scale_14"
type: "Scale"
bottom: "conv_14"
top: "conv_14"
scale_param {
bias_term: true
}
}
layer {
name: "proj_13"
type: "Convolution"
bottom: "elem_12"
top: "proj_13"
param {
lr_mult: 1.0
decay_mult: 2.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
}
layer {
name: "proj_norm_13"
type: "BatchNorm"
bottom: "proj_13"
top: "proj_13"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
use_global_stats: true
moving_average_fraction: 0.95
}
}
layer {
name: "proj_scale_13"
type: "Scale"
bottom: "proj_13"
top: "proj_13"
scale_param {
bias_term: true
}
}
layer {
name: "elem_14"
type: "Eltwise"
bottom: "conv_14"
bottom: "proj_13"
top: "elem_14"
eltwise_param {
operation: SUM
}
} layer {
name: "conv_15"
type: "Convolution"
bottom: "elem_14"
top: "conv_15"
param {
lr_mult: 1.0
decay_mult: 2.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
}
layer {
name: "norm_15"
type: "BatchNorm"
bottom: "conv_15"
top: "conv_15"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
use_global_stats: true
moving_average_fraction: 0.95
}
}
layer {
name: "scale_15"
type: "Scale"
bottom: "conv_15"
top: "conv_15"
scale_param {
bias_term: true
}
}
layer {
name: "relu_15"
type: "ReLU"
bottom: "conv_15"
top: "conv_15"
}
layer {
name: "conv_16"
type: "Convolution"
bottom: "conv_15"
top: "conv_16"
param {
lr_mult: 1.0
decay_mult: 2.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
}
layer {
name: "norm_16"
type: "BatchNorm"
bottom: "conv_16"
top: "conv_16"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
use_global_stats: true
moving_average_fraction: 0.95
}
}
layer {
name: "scale_16"
type: "Scale"
bottom: "conv_16"
top: "conv_16"
scale_param {
bias_term: true
}
}
layer {
name: "elem_16"
type: "Eltwise"
bottom: "conv_16"
bottom: "elem_14"
top: "elem_16"
eltwise_param {
operation: SUM
}
} layer {
name: "conv_17"
type: "Convolution"
bottom: "elem_16"
top: "conv_17"
param {
lr_mult: 1.0
decay_mult: 2.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
}
layer {
name: "norm_17"
type: "BatchNorm"
bottom: "conv_17"
top: "conv_17"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
use_global_stats: true
moving_average_fraction: 0.95
}
}
layer {
name: "scale_17"
type: "Scale"
bottom: "conv_17"
top: "conv_17"
scale_param {
bias_term: true
}
}
layer {
name: "relu_17"
type: "ReLU"
bottom: "conv_17"
top: "conv_17"
}
layer {
name: "conv_18"
type: "Convolution"
bottom: "conv_17"
top: "conv_18"
param {
lr_mult: 1.0
decay_mult: 2.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
}
layer {
name: "norm_18"
type: "BatchNorm"
bottom: "conv_18"
top: "conv_18"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
use_global_stats: true
moving_average_fraction: 0.95
}
}
layer {
name: "scale_18"
type: "Scale"
bottom: "conv_18"
top: "conv_18"
scale_param {
bias_term: true
}
}
layer {
name: "elem_18"
type: "Eltwise"
bottom: "conv_18"
bottom: "elem_16"
top: "elem_18"
eltwise_param {
operation: SUM
}
} layer {
name: "pool_19"
type: "Pooling"
bottom: "elem_18"
top: "pool_19"
pooling_param {
pool: AVE
global_pooling: true
}
}
layer {
name: "fc_19"
type: "InnerProduct"
bottom: "pool_19"
top: "fc_19"
param {
lr_mult: 1.0
decay_mult: 2.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
inner_product_param {
num_output:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
}

name: "ResNet-50"
input: "data"
input_dim:
input_dim:
input_dim:
input_dim: layer {
bottom: "data"
top: "conv1"
name: "conv1"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
}
} layer {
bottom: "conv1"
top: "conv1"
name: "bn_conv1"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "conv1"
top: "conv1"
name: "scale_conv1"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "conv1"
top: "conv1"
name: "conv1_relu"
type: "ReLU"
} layer {
bottom: "conv1"
top: "pool1"
name: "pool1"
type: "Pooling"
pooling_param {
kernel_size:
stride:
pool: MAX
}
} layer {
bottom: "pool1"
top: "res2a_branch1"
name: "res2a_branch1"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res2a_branch1"
top: "res2a_branch1"
name: "bn2a_branch1"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res2a_branch1"
top: "res2a_branch1"
name: "scale2a_branch1"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "pool1"
top: "res2a_branch2a"
name: "res2a_branch2a"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res2a_branch2a"
top: "res2a_branch2a"
name: "bn2a_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res2a_branch2a"
top: "res2a_branch2a"
name: "scale2a_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res2a_branch2a"
top: "res2a_branch2a"
name: "res2a_branch2a_relu"
type: "ReLU"
} layer {
bottom: "res2a_branch2a"
top: "res2a_branch2b"
name: "res2a_branch2b"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res2a_branch2b"
top: "res2a_branch2b"
name: "bn2a_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res2a_branch2b"
top: "res2a_branch2b"
name: "scale2a_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res2a_branch2b"
top: "res2a_branch2b"
name: "res2a_branch2b_relu"
type: "ReLU"
} layer {
bottom: "res2a_branch2b"
top: "res2a_branch2c"
name: "res2a_branch2c"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res2a_branch2c"
top: "res2a_branch2c"
name: "bn2a_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res2a_branch2c"
top: "res2a_branch2c"
name: "scale2a_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res2a_branch1"
bottom: "res2a_branch2c"
top: "res2a"
name: "res2a"
type: "Eltwise"
} layer {
bottom: "res2a"
top: "res2a"
name: "res2a_relu"
type: "ReLU"
} layer {
bottom: "res2a"
top: "res2b_branch2a"
name: "res2b_branch2a"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res2b_branch2a"
top: "res2b_branch2a"
name: "bn2b_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res2b_branch2a"
top: "res2b_branch2a"
name: "scale2b_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res2b_branch2a"
top: "res2b_branch2a"
name: "res2b_branch2a_relu"
type: "ReLU"
} layer {
bottom: "res2b_branch2a"
top: "res2b_branch2b"
name: "res2b_branch2b"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res2b_branch2b"
top: "res2b_branch2b"
name: "bn2b_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res2b_branch2b"
top: "res2b_branch2b"
name: "scale2b_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res2b_branch2b"
top: "res2b_branch2b"
name: "res2b_branch2b_relu"
type: "ReLU"
} layer {
bottom: "res2b_branch2b"
top: "res2b_branch2c"
name: "res2b_branch2c"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res2b_branch2c"
top: "res2b_branch2c"
name: "bn2b_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res2b_branch2c"
top: "res2b_branch2c"
name: "scale2b_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res2a"
bottom: "res2b_branch2c"
top: "res2b"
name: "res2b"
type: "Eltwise"
} layer {
bottom: "res2b"
top: "res2b"
name: "res2b_relu"
type: "ReLU"
} layer {
bottom: "res2b"
top: "res2c_branch2a"
name: "res2c_branch2a"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res2c_branch2a"
top: "res2c_branch2a"
name: "bn2c_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res2c_branch2a"
top: "res2c_branch2a"
name: "scale2c_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res2c_branch2a"
top: "res2c_branch2a"
name: "res2c_branch2a_relu"
type: "ReLU"
} layer {
bottom: "res2c_branch2a"
top: "res2c_branch2b"
name: "res2c_branch2b"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res2c_branch2b"
top: "res2c_branch2b"
name: "bn2c_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res2c_branch2b"
top: "res2c_branch2b"
name: "scale2c_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res2c_branch2b"
top: "res2c_branch2b"
name: "res2c_branch2b_relu"
type: "ReLU"
} layer {
bottom: "res2c_branch2b"
top: "res2c_branch2c"
name: "res2c_branch2c"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res2c_branch2c"
top: "res2c_branch2c"
name: "bn2c_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res2c_branch2c"
top: "res2c_branch2c"
name: "scale2c_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res2b"
bottom: "res2c_branch2c"
top: "res2c"
name: "res2c"
type: "Eltwise"
} layer {
bottom: "res2c"
top: "res2c"
name: "res2c_relu"
type: "ReLU"
} layer {
bottom: "res2c"
top: "res3a_branch1"
name: "res3a_branch1"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res3a_branch1"
top: "res3a_branch1"
name: "bn3a_branch1"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res3a_branch1"
top: "res3a_branch1"
name: "scale3a_branch1"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res2c"
top: "res3a_branch2a"
name: "res3a_branch2a"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res3a_branch2a"
top: "res3a_branch2a"
name: "bn3a_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res3a_branch2a"
top: "res3a_branch2a"
name: "scale3a_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res3a_branch2a"
top: "res3a_branch2a"
name: "res3a_branch2a_relu"
type: "ReLU"
} layer {
bottom: "res3a_branch2a"
top: "res3a_branch2b"
name: "res3a_branch2b"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res3a_branch2b"
top: "res3a_branch2b"
name: "bn3a_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res3a_branch2b"
top: "res3a_branch2b"
name: "scale3a_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res3a_branch2b"
top: "res3a_branch2b"
name: "res3a_branch2b_relu"
type: "ReLU"
} layer {
bottom: "res3a_branch2b"
top: "res3a_branch2c"
name: "res3a_branch2c"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res3a_branch2c"
top: "res3a_branch2c"
name: "bn3a_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res3a_branch2c"
top: "res3a_branch2c"
name: "scale3a_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res3a_branch1"
bottom: "res3a_branch2c"
top: "res3a"
name: "res3a"
type: "Eltwise"
} layer {
bottom: "res3a"
top: "res3a"
name: "res3a_relu"
type: "ReLU"
} layer {
bottom: "res3a"
top: "res3b_branch2a"
name: "res3b_branch2a"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res3b_branch2a"
top: "res3b_branch2a"
name: "bn3b_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res3b_branch2a"
top: "res3b_branch2a"
name: "scale3b_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res3b_branch2a"
top: "res3b_branch2a"
name: "res3b_branch2a_relu"
type: "ReLU"
} layer {
bottom: "res3b_branch2a"
top: "res3b_branch2b"
name: "res3b_branch2b"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res3b_branch2b"
top: "res3b_branch2b"
name: "bn3b_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res3b_branch2b"
top: "res3b_branch2b"
name: "scale3b_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res3b_branch2b"
top: "res3b_branch2b"
name: "res3b_branch2b_relu"
type: "ReLU"
} layer {
bottom: "res3b_branch2b"
top: "res3b_branch2c"
name: "res3b_branch2c"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res3b_branch2c"
top: "res3b_branch2c"
name: "bn3b_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res3b_branch2c"
top: "res3b_branch2c"
name: "scale3b_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res3a"
bottom: "res3b_branch2c"
top: "res3b"
name: "res3b"
type: "Eltwise"
} layer {
bottom: "res3b"
top: "res3b"
name: "res3b_relu"
type: "ReLU"
} layer {
bottom: "res3b"
top: "res3c_branch2a"
name: "res3c_branch2a"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res3c_branch2a"
top: "res3c_branch2a"
name: "bn3c_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res3c_branch2a"
top: "res3c_branch2a"
name: "scale3c_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res3c_branch2a"
top: "res3c_branch2a"
name: "res3c_branch2a_relu"
type: "ReLU"
} layer {
bottom: "res3c_branch2a"
top: "res3c_branch2b"
name: "res3c_branch2b"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res3c_branch2b"
top: "res3c_branch2b"
name: "bn3c_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res3c_branch2b"
top: "res3c_branch2b"
name: "scale3c_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res3c_branch2b"
top: "res3c_branch2b"
name: "res3c_branch2b_relu"
type: "ReLU"
} layer {
bottom: "res3c_branch2b"
top: "res3c_branch2c"
name: "res3c_branch2c"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res3c_branch2c"
top: "res3c_branch2c"
name: "bn3c_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res3c_branch2c"
top: "res3c_branch2c"
name: "scale3c_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res3b"
bottom: "res3c_branch2c"
top: "res3c"
name: "res3c"
type: "Eltwise"
} layer {
bottom: "res3c"
top: "res3c"
name: "res3c_relu"
type: "ReLU"
} layer {
bottom: "res3c"
top: "res3d_branch2a"
name: "res3d_branch2a"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res3d_branch2a"
top: "res3d_branch2a"
name: "bn3d_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res3d_branch2a"
top: "res3d_branch2a"
name: "scale3d_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res3d_branch2a"
top: "res3d_branch2a"
name: "res3d_branch2a_relu"
type: "ReLU"
} layer {
bottom: "res3d_branch2a"
top: "res3d_branch2b"
name: "res3d_branch2b"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res3d_branch2b"
top: "res3d_branch2b"
name: "bn3d_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res3d_branch2b"
top: "res3d_branch2b"
name: "scale3d_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res3d_branch2b"
top: "res3d_branch2b"
name: "res3d_branch2b_relu"
type: "ReLU"
} layer {
bottom: "res3d_branch2b"
top: "res3d_branch2c"
name: "res3d_branch2c"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res3d_branch2c"
top: "res3d_branch2c"
name: "bn3d_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res3d_branch2c"
top: "res3d_branch2c"
name: "scale3d_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res3c"
bottom: "res3d_branch2c"
top: "res3d"
name: "res3d"
type: "Eltwise"
} layer {
bottom: "res3d"
top: "res3d"
name: "res3d_relu"
type: "ReLU"
} layer {
bottom: "res3d"
top: "res4a_branch1"
name: "res4a_branch1"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res4a_branch1"
top: "res4a_branch1"
name: "bn4a_branch1"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res4a_branch1"
top: "res4a_branch1"
name: "scale4a_branch1"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res3d"
top: "res4a_branch2a"
name: "res4a_branch2a"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res4a_branch2a"
top: "res4a_branch2a"
name: "bn4a_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res4a_branch2a"
top: "res4a_branch2a"
name: "scale4a_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res4a_branch2a"
top: "res4a_branch2a"
name: "res4a_branch2a_relu"
type: "ReLU"
} layer {
bottom: "res4a_branch2a"
top: "res4a_branch2b"
name: "res4a_branch2b"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res4a_branch2b"
top: "res4a_branch2b"
name: "bn4a_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res4a_branch2b"
top: "res4a_branch2b"
name: "scale4a_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res4a_branch2b"
top: "res4a_branch2b"
name: "res4a_branch2b_relu"
type: "ReLU"
} layer {
bottom: "res4a_branch2b"
top: "res4a_branch2c"
name: "res4a_branch2c"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res4a_branch2c"
top: "res4a_branch2c"
name: "bn4a_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res4a_branch2c"
top: "res4a_branch2c"
name: "scale4a_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res4a_branch1"
bottom: "res4a_branch2c"
top: "res4a"
name: "res4a"
type: "Eltwise"
} layer {
bottom: "res4a"
top: "res4a"
name: "res4a_relu"
type: "ReLU"
} layer {
bottom: "res4a"
top: "res4b_branch2a"
name: "res4b_branch2a"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res4b_branch2a"
top: "res4b_branch2a"
name: "bn4b_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res4b_branch2a"
top: "res4b_branch2a"
name: "scale4b_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res4b_branch2a"
top: "res4b_branch2a"
name: "res4b_branch2a_relu"
type: "ReLU"
} layer {
bottom: "res4b_branch2a"
top: "res4b_branch2b"
name: "res4b_branch2b"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res4b_branch2b"
top: "res4b_branch2b"
name: "bn4b_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res4b_branch2b"
top: "res4b_branch2b"
name: "scale4b_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res4b_branch2b"
top: "res4b_branch2b"
name: "res4b_branch2b_relu"
type: "ReLU"
} layer {
bottom: "res4b_branch2b"
top: "res4b_branch2c"
name: "res4b_branch2c"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res4b_branch2c"
top: "res4b_branch2c"
name: "bn4b_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res4b_branch2c"
top: "res4b_branch2c"
name: "scale4b_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res4a"
bottom: "res4b_branch2c"
top: "res4b"
name: "res4b"
type: "Eltwise"
} layer {
bottom: "res4b"
top: "res4b"
name: "res4b_relu"
type: "ReLU"
} layer {
bottom: "res4b"
top: "res4c_branch2a"
name: "res4c_branch2a"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res4c_branch2a"
top: "res4c_branch2a"
name: "bn4c_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res4c_branch2a"
top: "res4c_branch2a"
name: "scale4c_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res4c_branch2a"
top: "res4c_branch2a"
name: "res4c_branch2a_relu"
type: "ReLU"
} layer {
bottom: "res4c_branch2a"
top: "res4c_branch2b"
name: "res4c_branch2b"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res4c_branch2b"
top: "res4c_branch2b"
name: "bn4c_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res4c_branch2b"
top: "res4c_branch2b"
name: "scale4c_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res4c_branch2b"
top: "res4c_branch2b"
name: "res4c_branch2b_relu"
type: "ReLU"
} layer {
bottom: "res4c_branch2b"
top: "res4c_branch2c"
name: "res4c_branch2c"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res4c_branch2c"
top: "res4c_branch2c"
name: "bn4c_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res4c_branch2c"
top: "res4c_branch2c"
name: "scale4c_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res4b"
bottom: "res4c_branch2c"
top: "res4c"
name: "res4c"
type: "Eltwise"
} layer {
bottom: "res4c"
top: "res4c"
name: "res4c_relu"
type: "ReLU"
} layer {
bottom: "res4c"
top: "res4d_branch2a"
name: "res4d_branch2a"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res4d_branch2a"
top: "res4d_branch2a"
name: "bn4d_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res4d_branch2a"
top: "res4d_branch2a"
name: "scale4d_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res4d_branch2a"
top: "res4d_branch2a"
name: "res4d_branch2a_relu"
type: "ReLU"
} layer {
bottom: "res4d_branch2a"
top: "res4d_branch2b"
name: "res4d_branch2b"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res4d_branch2b"
top: "res4d_branch2b"
name: "bn4d_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res4d_branch2b"
top: "res4d_branch2b"
name: "scale4d_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res4d_branch2b"
top: "res4d_branch2b"
name: "res4d_branch2b_relu"
type: "ReLU"
} layer {
bottom: "res4d_branch2b"
top: "res4d_branch2c"
name: "res4d_branch2c"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res4d_branch2c"
top: "res4d_branch2c"
name: "bn4d_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res4d_branch2c"
top: "res4d_branch2c"
name: "scale4d_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res4c"
bottom: "res4d_branch2c"
top: "res4d"
name: "res4d"
type: "Eltwise"
} layer {
bottom: "res4d"
top: "res4d"
name: "res4d_relu"
type: "ReLU"
} layer {
bottom: "res4d"
top: "res4e_branch2a"
name: "res4e_branch2a"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res4e_branch2a"
top: "res4e_branch2a"
name: "bn4e_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res4e_branch2a"
top: "res4e_branch2a"
name: "scale4e_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res4e_branch2a"
top: "res4e_branch2a"
name: "res4e_branch2a_relu"
type: "ReLU"
} layer {
bottom: "res4e_branch2a"
top: "res4e_branch2b"
name: "res4e_branch2b"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res4e_branch2b"
top: "res4e_branch2b"
name: "bn4e_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res4e_branch2b"
top: "res4e_branch2b"
name: "scale4e_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res4e_branch2b"
top: "res4e_branch2b"
name: "res4e_branch2b_relu"
type: "ReLU"
} layer {
bottom: "res4e_branch2b"
top: "res4e_branch2c"
name: "res4e_branch2c"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res4e_branch2c"
top: "res4e_branch2c"
name: "bn4e_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res4e_branch2c"
top: "res4e_branch2c"
name: "scale4e_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res4d"
bottom: "res4e_branch2c"
top: "res4e"
name: "res4e"
type: "Eltwise"
} layer {
bottom: "res4e"
top: "res4e"
name: "res4e_relu"
type: "ReLU"
} layer {
bottom: "res4e"
top: "res4f_branch2a"
name: "res4f_branch2a"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res4f_branch2a"
top: "res4f_branch2a"
name: "bn4f_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res4f_branch2a"
top: "res4f_branch2a"
name: "scale4f_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res4f_branch2a"
top: "res4f_branch2a"
name: "res4f_branch2a_relu"
type: "ReLU"
} layer {
bottom: "res4f_branch2a"
top: "res4f_branch2b"
name: "res4f_branch2b"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res4f_branch2b"
top: "res4f_branch2b"
name: "bn4f_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res4f_branch2b"
top: "res4f_branch2b"
name: "scale4f_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res4f_branch2b"
top: "res4f_branch2b"
name: "res4f_branch2b_relu"
type: "ReLU"
} layer {
bottom: "res4f_branch2b"
top: "res4f_branch2c"
name: "res4f_branch2c"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res4f_branch2c"
top: "res4f_branch2c"
name: "bn4f_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res4f_branch2c"
top: "res4f_branch2c"
name: "scale4f_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res4e"
bottom: "res4f_branch2c"
top: "res4f"
name: "res4f"
type: "Eltwise"
} layer {
bottom: "res4f"
top: "res4f"
name: "res4f_relu"
type: "ReLU"
} layer {
bottom: "res4f"
top: "res5a_branch1"
name: "res5a_branch1"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res5a_branch1"
top: "res5a_branch1"
name: "bn5a_branch1"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res5a_branch1"
top: "res5a_branch1"
name: "scale5a_branch1"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res4f"
top: "res5a_branch2a"
name: "res5a_branch2a"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res5a_branch2a"
top: "res5a_branch2a"
name: "bn5a_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res5a_branch2a"
top: "res5a_branch2a"
name: "scale5a_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res5a_branch2a"
top: "res5a_branch2a"
name: "res5a_branch2a_relu"
type: "ReLU"
} layer {
bottom: "res5a_branch2a"
top: "res5a_branch2b"
name: "res5a_branch2b"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res5a_branch2b"
top: "res5a_branch2b"
name: "bn5a_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res5a_branch2b"
top: "res5a_branch2b"
name: "scale5a_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res5a_branch2b"
top: "res5a_branch2b"
name: "res5a_branch2b_relu"
type: "ReLU"
} layer {
bottom: "res5a_branch2b"
top: "res5a_branch2c"
name: "res5a_branch2c"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res5a_branch2c"
top: "res5a_branch2c"
name: "bn5a_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res5a_branch2c"
top: "res5a_branch2c"
name: "scale5a_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res5a_branch1"
bottom: "res5a_branch2c"
top: "res5a"
name: "res5a"
type: "Eltwise"
} layer {
bottom: "res5a"
top: "res5a"
name: "res5a_relu"
type: "ReLU"
} layer {
bottom: "res5a"
top: "res5b_branch2a"
name: "res5b_branch2a"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res5b_branch2a"
top: "res5b_branch2a"
name: "bn5b_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res5b_branch2a"
top: "res5b_branch2a"
name: "scale5b_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res5b_branch2a"
top: "res5b_branch2a"
name: "res5b_branch2a_relu"
type: "ReLU"
} layer {
bottom: "res5b_branch2a"
top: "res5b_branch2b"
name: "res5b_branch2b"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res5b_branch2b"
top: "res5b_branch2b"
name: "bn5b_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res5b_branch2b"
top: "res5b_branch2b"
name: "scale5b_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res5b_branch2b"
top: "res5b_branch2b"
name: "res5b_branch2b_relu"
type: "ReLU"
} layer {
bottom: "res5b_branch2b"
top: "res5b_branch2c"
name: "res5b_branch2c"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res5b_branch2c"
top: "res5b_branch2c"
name: "bn5b_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res5b_branch2c"
top: "res5b_branch2c"
name: "scale5b_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res5a"
bottom: "res5b_branch2c"
top: "res5b"
name: "res5b"
type: "Eltwise"
} layer {
bottom: "res5b"
top: "res5b"
name: "res5b_relu"
type: "ReLU"
} layer {
bottom: "res5b"
top: "res5c_branch2a"
name: "res5c_branch2a"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res5c_branch2a"
top: "res5c_branch2a"
name: "bn5c_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res5c_branch2a"
top: "res5c_branch2a"
name: "scale5c_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res5c_branch2a"
top: "res5c_branch2a"
name: "res5c_branch2a_relu"
type: "ReLU"
} layer {
bottom: "res5c_branch2a"
top: "res5c_branch2b"
name: "res5c_branch2b"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res5c_branch2b"
top: "res5c_branch2b"
name: "bn5c_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res5c_branch2b"
top: "res5c_branch2b"
name: "scale5c_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res5c_branch2b"
top: "res5c_branch2b"
name: "res5c_branch2b_relu"
type: "ReLU"
} layer {
bottom: "res5c_branch2b"
top: "res5c_branch2c"
name: "res5c_branch2c"
type: "Convolution"
convolution_param {
num_output:
kernel_size:
pad:
stride:
bias_term: false
}
} layer {
bottom: "res5c_branch2c"
top: "res5c_branch2c"
name: "bn5c_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
} layer {
bottom: "res5c_branch2c"
top: "res5c_branch2c"
name: "scale5c_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
} layer {
bottom: "res5b"
bottom: "res5c_branch2c"
top: "res5c"
name: "res5c"
type: "Eltwise"
} layer {
bottom: "res5c"
top: "res5c"
name: "res5c_relu"
type: "ReLU"
} layer {
bottom: "res5c"
top: "pool5"
name: "pool5"
type: "Pooling"
pooling_param {
kernel_size:
stride:
pool: AVE
}
} layer {
bottom: "pool5"
top: "fc1000"
name: "fc1000"
type: "InnerProduct"
inner_product_param {
num_output:
}
} layer {
bottom: "fc1000"
top: "prob"
name: "prob"
type: "Softmax"
}

ResNet caffe 中为什么bn层要和scale层一起使用

https://zhidao.baidu.com/question/621624946902864092.html

这个问题首先你要理解batchnormal是做什么的。它其实做了两件事。
1) 输入归一化 x_norm = (x-u)/std, 其中u和std是个累计计算的均值和方差。
2)y=alpha×x_norm + beta,对归一化后的x进行比例缩放和位移。其中alpha和beta是通过迭代学习的。
那么caffe中的bn层其实只做了第一件事。scale层做了第二件事。
这样你也就理解了scale层里为什么要设置bias_term=True,这个偏置就对应2)件事里的beta。

网络结构文件中BatchNorm层的参数要注意

1.在训练时所有BN层要设置use_global_stats: false(也可以不写,caffe默认是false) 
2.在测试时所有BN层要设置use_global_stats: true

影响: 
1.训练如果不设为false,会导致模型不收敛 
2.测试如果不设置为true,会导致准确率极低 
(亲测,测试时为false时acc=0.05,为true时acc=0.91)

区别: 
use_global_stats: false是使用了每个Batch里的数据的均值和方差; 
use_global_stats: true是使用了所有数据的均值和方差。

转载:resNet论文笔记的更多相关文章

  1. ResNet论文笔记

    其实ResNet这篇论文看了很多次了,也是近几年最火的算法模型之一,一直没整理出来(其实不是要到用可能也不会整理吧,懒字头上一把刀啊,主要是是为了将resnet作为encoder嵌入到unet架构中, ...

  2. 【转载】论文笔记系列-Tree-CNN: A Deep Convolutional Neural Network for Lifelong Learning

    一. 引出主题¶ 深度学习领域一直存在一个比较严重的问题——“灾难性遗忘”,即一旦使用新的数据集去训练已有的模型,该模型将会失去对原数据集识别的能力.为解决这一问题,本文提出了树卷积神经网络,通过先将 ...

  3. 论文笔记:CNN经典结构1(AlexNet,ZFNet,OverFeat,VGG,GoogleNet,ResNet)

    前言 本文主要介绍2012-2015年的一些经典CNN结构,从AlexNet,ZFNet,OverFeat到VGG,GoogleNetv1-v4,ResNetv1-v2. 在论文笔记:CNN经典结构2 ...

  4. 【转载】GAN for NLP 论文笔记

    本篇随笔为转载,原贴地址,知乎:GAN for NLP(论文笔记及解读).

  5. 论文笔记(1):Deep Learning.

    论文笔记1:Deep Learning         2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature ...

  6. 论文笔记(2):A fast learning algorithm for deep belief nets.

    论文笔记(2):A fast learning algorithm for deep belief nets. 这几天继续学习一篇论文,Hinton的A Fast Learning Algorithm ...

  7. 论文笔记:Mastering the game of Go with deep neural networks and tree search

    Mastering the game of Go with deep neural networks and tree search Nature 2015  这是本人论文笔记系列第二篇 Nature ...

  8. 论文笔记:CNN经典结构2(WideResNet,FractalNet,DenseNet,ResNeXt,DPN,SENet)

    前言 在论文笔记:CNN经典结构1中主要讲了2012-2015年的一些经典CNN结构.本文主要讲解2016-2017年的一些经典CNN结构. CIFAR和SVHN上,DenseNet-BC优于ResN ...

  9. Self-paced Clustering Ensemble自步聚类集成论文笔记

    Self-paced Clustering Ensemble自步聚类集成论文笔记 2019-06-23 22:20:40 zpainter 阅读数 174  收藏 更多 分类专栏: 论文   版权声明 ...

随机推荐

  1. ant-design表单处理和常用方法及自定义验证

    首先要说一下antdesign这个框架API和demo丰富,而且开发环境提供对应的warning来纠正用户的错误.是一个很好的组件库. 关于表单验证方面是依赖于 async-validator  库. ...

  2. recess----3.Controller如何和View关联

    上一篇我们讲到,Recess框架里面的controller就是一个典型的MVC框架的controller,它负责处理从浏览器(或其它客户端)过来的request,然后调用引用model里面的方法来进行 ...

  3. Hibernate 第一个体验程序

    首先要导入包,将下载的hibernate所有required包导入,将下载的hibernate用来写log的slf4j的api和nopjar包导入,将下载的mysql链接引擎jar包导入. 然后新建j ...

  4. Cacti监控mysql数据库服务器实现过程

    Cacti监控mysql数据库服务器实现过程 2014-05-29      0个评论    来源:Cacti监控mysql数据库服务器实现过程   收藏    我要投稿 1 先在cacti服务器端安 ...

  5. 随机验证码模块(random)

    1. 生成一个6位数字+字母的验证码 (面试题) import random l = []for i in range(6): alpha = chr(random.randint(65,90)) a ...

  6. phpexcel表的一些设置

    $objPHPExcel = new PHPExcel(); $objPHPExcel->setActiveSheetIndex(0); //set default styles$objPHPE ...

  7. simpleRNN

    simpleRNN 训练集为<爱丽丝梦境>英文版txt文档,目标:根据随机给出的10个字符,生成可能的后100个字符 词向量空间生产 In [4]: INPUT_FILE = " ...

  8. jmeter ---测试TCP服务器/模拟发送TCP请求

    jmeter测试TCP服务器/模拟发送TCP请求 jmeter测试TCP服务器,使用TCP采样器模拟发送TCP请求. TCP采样器:打开一个到指定服务器的TCP / IP连接,然后发送指定文本并等待响 ...

  9. 转在Python中实现PageFactory模式

    转自: http://www.cnblogs.com/fnng/p/5092383.html 关于 PageFactory 的概念主要是Java中内置了PageFactory类. import org ...

  10. apache与和mysql重启命令

    修改linux服务器的http配置之后,必须重启Apache服务. 命令为: /etc/rc.d/init.d/httpd restart chown -R mysql:mysql 目录名 改变文件属 ...