【BZOJ3876】[Ahoi2014]支线剧情 有上下界费用流
【BZOJ3876】[Ahoi2014]支线剧情
Description
Input
Output
输出一行包含一个整数,表示JYY看完所有支线剧情所需要的最少时间。
Sample Input
2 2 1 3 2
2 4 3 5 4
2 5 5 6 6
0
0
0
Sample Output
HINT
JYY需要重新开始3次游戏,加上一开始的一次游戏,4次游戏的进程是
对于100%的数据满足N<=300,0<=Ki<=50,1<=Tij<=300,Sigma(Ki)<=5000
题解:初学了有上下界费用流,赶紧水一发~
有上下界费用流其实跟有上下界最大流都差不多,都是新建原、汇,然后将下界全都放到新建的原汇上搞定,剩余的用原图搞定,具体方法:对于边(i,j),设它的长度为len
1.S -> j 容量1,费用len 相当于(i,j)的下界
2.i -> T 容量1,费用0 也相当于(i,j)的下界
3.i -> j 容量∞,费用len 相当于(i,j)上界无穷大
4.i -> S 容量∞,费用0 相当于每个点都向原图的汇点连一条边,但是由于汇点到源点还要连一条费用0的边,所以就将原图汇点省略了(也可以理解为在任意一个位置都可以结束,所以任意一个点都是汇点)
然后正常的跑费用流就行了
#include <cstdio>
#include <iostream>
#include <queue>
#include <cstring>
using namespace std;
int n,m,cnt,S,T,ans;
int dis[500],inq[500],to[300000],next[300000],cost[300000],flow[300000],pe[500],pv[500],head[500];
queue<int> q;
void add(int a,int b,int c,int d)
{
to[cnt]=b,cost[cnt]=c,flow[cnt]=d,next[cnt]=head[a],head[a]=cnt++;
to[cnt]=a,cost[cnt]=-c,flow[cnt]=0,next[cnt]=head[b],head[b]=cnt++;
}
int bfs()
{
int i,u;
memset(dis,0x3f,sizeof(dis));
dis[S]=0,q.push(S);
while(!q.empty())
{
u=q.front(),q.pop(),inq[u]=0;
for(i=head[u];i!=-1;i=next[i])
{
if(dis[to[i]]>dis[u]+cost[i]&&flow[i])
{
dis[to[i]]=dis[u]+cost[i],pe[to[i]]=i,pv[to[i]]=u;
if(!inq[to[i]]) inq[to[i]]=1,q.push(to[i]);
}
}
}
return dis[T]<0x3f3f3f3f;
}
int rd()
{
int ret=0; char gc=getchar();
while(gc<'0'||gc>'9') gc=getchar();
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret;
}
int main()
{
memset(head,-1,sizeof(head));
int i,j,k,a,b,c;
n=rd();
S=0,T=n+1;
for(i=1;i<=n;i++)
{
a=rd();
for(j=1;j<=a;j++)
{
b=rd(),c=rd();
add(i,b,c,1<<30),add(S,b,c,1);
}
if(a) add(i,T,0,a);
if(i!=1) add(i,1,0,1<<30);
}
while(bfs())
{
int mf=1<<30;
for(i=T;i;i=pv[i]) mf=min(mf,flow[pe[i]]);
ans+=dis[T]*mf;
for(i=T;i;i=pv[i]) flow[pe[i]]-=mf,flow[pe[i]^1]+=mf;
}
printf("%d",ans);
return 0;
}
【BZOJ3876】[Ahoi2014]支线剧情 有上下界费用流的更多相关文章
- bzoj3876: [Ahoi2014&Jsoi2014]支线剧情(上下界费用流)
传送门 一道题让我又要学可行流又要学zkw费用流…… 考虑一下,原题可以转化为一个有向图,每次走一条路径,把每一条边都至少覆盖一次,求最小代价 因为一条边每走过一次,就要付出一次代价 那不就是费用流了 ...
- [AHOI2014/JSOI2014]支线剧情 有上下界费用流
---题面--- 题解: 第一眼费用流,,然后想了好久怎么建图,,,最后发现是最小费用可行流的板子题.... 其实还没有很懂这个算法,所以这里只是摆一下步骤,以后再补理解吧. 首先一个思路就是转换图, ...
- 【BZOJ-3876】支线剧情 有上下界的网络流(有下界有源有汇最小费用最大流)
3876: [Ahoi2014]支线剧情 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 821 Solved: 502[Submit][Status ...
- BZOJ 3876: [Ahoi2014]支线剧情 [上下界费用流]
3876: [Ahoi2014]支线剧情 题意:每次只能从1开始,每条边至少经过一次,有边权,求最小花费 裸上下界费用流...每条边下界为1就行了 注意要加上下界*边权 #include <io ...
- 【有源汇上下界费用流】BZOJ 3876 [Ahoi2014]支线剧情
题目链接: http://www.lydsy.com:808/JudgeOnline/problem.php?id=3876 题目大意: 给定一张拓扑图(有向无环图),每条边有边权,每次只能从第一个点 ...
- BZOJ.1927.[SDOI2010]星际竞速(无源汇上下界费用流SPFA /最小路径覆盖)
题目链接 上下界费用流: /* 每个点i恰好(最少+最多)经过一次->拆点(最多)+限制流量下界(i,i',[1,1],0)(最少) 然后无源汇可行流 不需要源汇. 注: SS只会连i',求SS ...
- BZOJ2324 ZJOI2011营救皮卡丘(floyd+上下界费用流)
虽然不一定每次都是由编号小的点向编号大的走,但一个人摧毁的顺序一定是从编号小的到编号大的.那么在摧毁据点x的过程中,其只能经过编号小于x的点.并且这样一定合法,因为可以控制其他人先去摧毁所经过的点.那 ...
- 【BZOJ2055】80人环游世界 有上下界费用流
[BZOJ2055]80人环游世界 Description 想必大家都看过成龙大哥的<80天环游世界>,里面的紧张刺激的打斗场面一定给你留下了深刻的印象.现在就有这么 一个 ...
- 【bzoj2324】[ZJOI2011]营救皮卡丘 最短路-Floyd+有上下界费用流
原文地址:http://www.cnblogs.com/GXZlegend/p/6832504.html 题目描述 皮卡丘被火箭队用邪恶的计谋抢走了!这三个坏家伙还给小智留下了赤果果的挑衅!为了皮卡丘 ...
随机推荐
- Vue Element Form表单时间验证控件使用
如果直接使用Element做时间选择器,其规则(rules)不添加type:'date',会提示类型错误,处理这个需要规范值的类型为date. 时间格式化过滤器 import Vue from 'vu ...
- C#使用技巧之调用JS脚本(转)
.创建个Winform项目. .在From1上增加一个文本框一个按钮. .在解决方案中创建一个test.js文件. test.js代码如下: function sayHello(str) { retu ...
- php里面的编码问题
1 获取当前字符串的编码 $encode = mb_detect_encoding($str, array("ASCII",'UTF-8',"GB2312",& ...
- 安装gstreamer开发环境
ubuntu中安装gstreamer开发环境: * 安装gstreamer基本库,工具,以及插件 sudo apt--dev gstreamer-tools gstreamer0.-tools gst ...
- qt中执行 sql文件的方法
由于qt中没有原生的执行sql文件的方法.因此我们需要根据sql文件中的流的特点,将其分解成一个个语句单独执行. 1.首先通过Qfile读取sql文件 2.将sql文件中的内容通过“:”进行拆解 3. ...
- c++的.o文件的链接顺序
linker对链接顺序要求很严格,如果顺序有误,多半就会报undefined reference to xxxxxx的错误 文件目录: 代码: main.cpp #include "Test ...
- spring 多个数据库之间切换
多数据源问题很常见,例如读写分离数据库配置. 原来的项目出现了新需求,局方要求新增某服务器用以提供某代码,涉及到多数据源的问题. 研究成果如下: 1.首先配置多个datasource [html] v ...
- 【shell】tar命令详解
tar [-cxtzjvfpPN] 文件与目录 ....参数:-c :建立一个压缩文件的参数指令(create 的意思):-x :解开一个压缩文件的参数指令!-t :查看 tarfile 里面的文件! ...
- C# mvc中动态压缩文件发送给前端
前言 帮朋友解决一个C#中发送压缩文件的的问题,因为感觉解释起来更麻烦,就直接用几分钟时间写了个小Demo.本着"走过路过"不错过的原则,也给记录一下. 1.前端代码 非常简单的一 ...
- 自己编写Android Studio插件 别停留在用的程度了(转载)
转自:自己编写Android Studio插件 别停留在用的程度了 1概述 相信大家在使用Android Studio的时候,或多或少的会使用一些插件,适当的配合插件可以帮助我们提升一定的开发效率,更 ...