Transportation

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2670    Accepted Submission(s): 1157

Problem Description
There
are N cities, and M directed roads connecting them. Now you want to
transport K units of goods from city 1 to city N. There are many robbers
on the road, so you must be very careful. The more goods you carry, the
more dangerous it is. To be more specific, for each road i, there is a
coefficient ai. If you want to carry x units of goods along this road, you should pay ai * x2 dollars to hire guards to protect your goods. And what’s worse, for each road i, there is an upper bound Ci, which means that you cannot transport more than Ci units of goods along this road. Please note you can only carry integral unit of goods along each road.
You should find out the minimum cost to transport all the goods safely.
 
Input
There
are several test cases. The first line of each case contains three
integers, N, M and K. (1 <= N <= 100, 1 <= M <= 5000, 0
<= K <= 100). Then M lines followed, each contains four integers
(ui, vi, ai, Ci), indicating there is a directed road from city ui to vi, whose coefficient is ai and upper bound is Ci. (1 <= ui, vi <= N, 0 < ai <= 100, Ci <= 5)
 
Output
Output
one line for each test case, indicating the minimum cost. If it is
impossible to transport all the K units of goods, output -1.

 
Sample Input
2 1 2
1 2 1 2
2 1 2
1 2 1 1
2 2 2
1 2 1 2
1 2 2 2
 
Sample Output
4
-1
3
 
Source
 
题意:现在有一个人要从1号点运送k个单位的货物到n号点,每一条边都有一个系数a,从第i条边运送x个单位的货物所需的费用是 ai*x*x,第i条边有个容量上限Ci,问运送这k个单位的货物所需的最小费用,如果不能运送,输出-1。
题解:参考自刘汝佳的<算法竞赛-训练指南>,由于每个边的容量上限不会超过5,而我们每次运送的也是整数,所以可以利用拆边来表示一条容量为Ci的边能够运送的所有可能,假设Ci==5,那么拆成5条容量为1的边,费用分别为 1*ai,3*ai,5*ai,7*ai,9*ai,那么所有的 x*x 都可以由这几条边组合而成,然后设定超级源点和1号点的容量为 k,n号点和超级汇点的容量为k ,这样的话就限制了最大流不会超过k.然后跑一遍MCMF,判断一下maxflow是否为k,是的话,输出mincost,不是的话,输出 -1。
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const int INF = ;
const int N = ;
const int M = ;
struct Edge{
int u,v,cap,cost,next;
}edge[M];
int head[N],tot,low[N],pre[N];
int total ;
bool vis[N];
void addEdge(int u,int v,int cap,int cost,int &k){
edge[k].u=u,edge[k].v=v,edge[k].cap = cap,edge[k].cost = cost,edge[k].next = head[u],head[u] = k++;
edge[k].u=v,edge[k].v=u,edge[k].cap = ,edge[k].cost = -cost,edge[k].next = head[v],head[v] = k++;
}
void init(){
memset(head,-,sizeof(head));
tot = ;
}
bool spfa(int s,int t,int n){
memset(vis,false,sizeof(vis));
for(int i=;i<=n;i++){
low[i] = INF;
pre[i] = -;
}
queue<int> q;
low[s] = ;
q.push(s);
while(!q.empty()){
int u = q.front();
q.pop();
vis[u] = false;
for(int k=head[u];k!=-;k=edge[k].next){
int v = edge[k].v;
if(edge[k].cap>&&low[v]>low[u]+edge[k].cost){
low[v] = low[u] + edge[k].cost;
pre[v] = k; ///v为终点对应的边
if(!vis[v]){
vis[v] = true;
q.push(v);
}
}
}
}
if(pre[t]==-) return false;
return true;
}
int MCMF(int s,int t,int n){
int mincost = ,minflow,flow=;
while(spfa(s,t,n))
{
minflow=INF+;
for(int i=pre[t];i!=-;i=pre[edge[i].u])
minflow=min(minflow,edge[i].cap);
flow+=minflow;
for(int i=pre[t];i!=-;i=pre[edge[i].u])
{
edge[i].cap-=minflow;
edge[i^].cap+=minflow;
}
mincost+=low[t]*minflow;
}
total=flow;
return mincost;
}
int n,m,k;
bool flag[N][N];
int main(){
while(scanf("%d%d%d",&n,&m,&k)!=EOF){
init();
memset(flag,-,sizeof(flag));
int src = ,des = n+;
for(int i=;i<=m;i++){
int u,v,a,c;
scanf("%d%d%d%d",&u,&v,&a,&c);
for(int j=;j<c;j++){
addEdge(u,v,,(*j+)*a,tot);
}
}
addEdge(src,,k,,tot);
addEdge(n,des,k,,tot);
int mincost = MCMF(src,des,n+);
if(total<k) printf("-1\n");
else printf("%d\n",mincost);
}
}

hdu 3667(最小费用最大流+拆边)的更多相关文章

  1. 【网络流#2】hdu 1533 - 最小费用最大流模板题

    最小费用最大流,即MCMF(Minimum Cost Maximum Flow)问题 嗯~第一次写费用流题... 这道就是费用流的模板题,找不到更裸的题了 建图:每个m(Man)作为源点,每个H(Ho ...

  2. hdu 1533(最小费用最大流)

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  3. hdu 4862KM&最小费用最大流

    /*最小K路径覆盖的模型,用费用流或者KM算法解决, 构造二部图,X部有N*M个节点,源点向X部每个节点连一条边, 流量1,费用0,Y部有N*M个节点,每个节点向汇点连一条边,流量1, 费用0,如果X ...

  4. HDU 1533 最小费用最大流(模板)

    http://acm.hdu.edu.cn/showproblem.php?pid=1533 这道题直接用了模板 题意:要构建一个二分图,家对应人,连线的权值就是最短距离,求最小费用 要注意void ...

  5. hdu 6437 /// 最小费用最大流 负花费 SPFA模板

    题目大意: 给定n,m,K,W 表示n个小时 m场电影(分为类型A.B) K个人 若某个人连续看了两场相同类型的电影则失去W 电影时间不能重叠 接下来给定m场电影的 s t w op 表示电影的 开始 ...

  6. hdu 4067(最小费用最大流)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4067 思路:很神奇的建图,参考大牛的: 如果人为添加t->s的边,那么图中所有顶点要满足的条件都 ...

  7. hdu 2485(最小费用最大流)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2485 思路:题目的意思是删除最少的点使1,n的最短路大于k.将点转化为边,容量为1,费用为0,然后就是 ...

  8. hdu 6201(最小费用最大流)

    transaction transaction transaction Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 132768/1 ...

  9. hdu 3667(拆边+最小费用最大流)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3667 思路:由于花费的计算方法是a*x*x,因此必须拆边,使得最小费用流模板可用,即变成a*x的形式. ...

随机推荐

  1. lighttpd - 配置文件

    转载其他网站,收藏查看! 配置文件lighttpd.conf参数详细说明的链接和选译 发表于 2010年12月22日 http://redmine.lighttpd.net/projects/ligh ...

  2. React router 4 获取路由参数,跨页面参数

    1. match通过路径 <Route path="/path/:name" component={example} /> 路由组件内获取参数使用 this.props ...

  3. HashMap & SparseArray & ArrayMap 简单说明

    HashMap 使用有限一维拉链数组存储结构,鉴于所用Entry结构{key, value, nextExtry},Key的hash值用于取余获得所属的数组行下标,通过链表方式顺序存放所有余数相同的各 ...

  4. Codeforces Round #341 (Div. 2)B

    B. Wet Shark and Bishops time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  5. Parcelable序列化对象

    一.序列化的目的 永久性保存对象,保存对象的字节序列到本地文件中: 通过序列化对象在网络中传递对象: 通过序列化在进程间传递对象; 在Intent中进行传递复杂自定义类对象时,需要实现Parcelab ...

  6. Leetcode 380. 常数时间插入、删除和获取随机元素

    1.题目描述 设计一个支持在平均 时间复杂度 O(1) 下,执行以下操作的数据结构. insert(val):当元素 val 不存在时,向集合中插入该项. remove(val):元素 val 存在时 ...

  7. uva 11424

    uva 11424 GCD - Extreme (I) 题意:思路:(见http://www.cnblogs.com/Duahanlang/p/3184994.html ) 差别在于数据规模和时间,其 ...

  8. 【updating】python读书笔记-The Django Book2.0(for django1.4)

    原文:http://www.djangobook.com/en/2.0/frontmatter.html 译文:http://djangobook.py3k.cn/2.0/ 或者http://docs ...

  9. JSTL 入门: 表达式语言

    转载自:http://www.ibm.com/developerworks/cn/java/j-jstl0211/ JavaServer Pages(JSP)是用于 J2EE 平台的标准表示层技术.J ...

  10. 删除linux上7天前后缀名.sql的文件

    #!/bin/bash#delete the file of 7 days agofind /data/mysqlbackup/ -mtime +7 -name "*.sql" - ...