题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3045

题目大意:有n个数,可以把n个数分成若干组,每组不得小于m个数,每组的价值=除了该组最小值以外每个值-最小值之和,求使得所有组的价值之和的最小值。

解题思路:将n个数按从小到大排序,处理前i为前缀和为sum[i],则可得出状态转移方程:dp[i]=min{dp[j]+sum[i]-sum[j+1]-a[j+1]*(i-j-1)}(0<=j<i-m+1),再用斜率DP优化即可。

     注意:一定要判断j是否大于等于m,因为至少m才能算一组奶牛,不然会出错。

代码:

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long LL;
const int N=5e5+; int head,tail;
LL sum[N],dp[N],a[N],q[N];; LL getUP(int k,int j){
return dp[j]+a[j+]*(j+)-sum[j+]-dp[k]-a[k+]*(k+)+sum[k+];
} LL getDOWN(int k,int j){
return a[j+]-a[k+];
} //dp[i]=min{dp[j]+sum[i]-sum[j+1]-a[j+1]*(i-j-1)}
LL getDP(int i,int j){
return dp[j]+sum[i]-sum[j+]-a[j+]*(i-j-);
} int main(){
int n,m;
while(~scanf("%d %d",&n,&m)){
memset(dp,0x3f3f3f3f,sizeof(dp));
for(int i=;i<=n;i++){
scanf("%lld",&a[i]);
}
sort(a+,a++n);
for(int i=;i<=n;i++){
sum[i]=sum[i-]+a[i];
}
dp[]=;
head=tail=;
q[tail++]=;
for(int i=;i<=n;i++){
while(head+<tail&&getUP(q[head],q[head+])<=i*getDOWN(q[head],q[head+])){
head++;
}
dp[i]=getDP(i,q[head]);
int j=i-m+;
//注意z这个判断,因为状态转移,也就是分组,至少要保证第一组有m头牛。
if(j<m)
continue;
while(head+<tail&&getUP(q[tail-],j)*getDOWN(q[tail-],q[tail-])<=getUP(q[tail-],q[tail-])*getDOWN(q[tail-],j)){
tail--;
}
q[tail++]=j;
}
printf("%lld\n",dp[n]);
} return ;
}

HDU 3045 picnic cows(斜率DP)的更多相关文章

  1. HDU 3045 - Picnic Cows - [斜率DP]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3045 It’s summer vocation now. After tedious milking, ...

  2. hdu 3045 Picnic Cows(斜率优化DP)

    题目链接:hdu 3045 Picnic Cows 题意: 有n个奶牛分别有对应的兴趣值,现在对奶牛分组,每组成员不少于t, 在每组中所有的成员兴趣值要减少到一致,问总共最少需要减少的兴趣值是多少. ...

  3. HDU 3045 Picnic Cows(斜率优化DP)

    Picnic Cows Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  4. HDU 3045 Picnic Cows

    $dp$,斜率优化. 设$dp[i]$表示$1$至$i$位置的最小费用,则$dp[i]=min(dp[j]+s[i]-s[j]-(i-j)*x[j+1])$,$dp[n]$为答案. 然后斜率优化就可以 ...

  5. HDU3045 Picnic Cows —— 斜率优化DP

    题目链接:https://vjudge.net/problem/HDU-3045 Picnic Cows Time Limit: 8000/4000 MS (Java/Others)    Memor ...

  6. HDU 2829 Lawrence (斜率DP)

    斜率DP 设dp[i][j]表示前i点,炸掉j条边的最小值.j<i dp[i][j]=min{dp[k][j-1]+cost[k+1][i]} 又由得出cost[1][i]=cost[1][k] ...

  7. HDU 3507 - Print Article - [斜率DP]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3507 Zero has an old printer that doesn't work well s ...

  8. HDU 3480 Division(斜率DP裸题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3480 题目大意:将n个数字分成m段,每段价值为(该段最大值-该段最小值)^2,求最小的总价值. 解题思 ...

  9. [kuangbin带你飞]专题二十 斜率DP

            ID Origin Title   20 / 60 Problem A HDU 3507 Print Article   13 / 19 Problem B HDU 2829 Lawr ...

随机推荐

  1. BZOJ1801:[AHOI2009]中国象棋——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=1801 https://www.luogu.org/problemnew/show/P2051 这次小 ...

  2. POJ.1003 Hangover ( 水 )

    POJ.1003 Hangover ( 水 ) 代码总览 #include <cstdio> #include <cstring> #include <algorithm ...

  3. git生成ssh key和多账号支持

    git配置ssh 1.首先设置git的全局user name和email $ git config --global user.name "ygtzz"$ git config - ...

  4. 背景建模技术(三):背景减法库(BGS Library)的基本框架与入口函数main()的功能

    背景减法库(BGS Library = background subtraction library)包含了37种背景建模算法,也是目前国际上关于背景建模技术研究最全也最权威的资料.本文将更加详细的介 ...

  5. Python爬虫学习笔记之模拟登陆并爬去GitHub

    (1)环境准备: 请确保已经安装了requests和lxml库 (2)分析登陆过程:     首先要分析登陆的过程,需要探究后台的登陆请求是怎样发送的,登陆之后又有怎样的处理过程.      如果已经 ...

  6. mysql5.6以上(适用5.7)免安装版本 终极配置

    1.解压你的mysql5.6 我解压的位置是D:\Program Files\mysql--winx64,你可以随意放在任何位置,不建议解压到C盘 2.来到你解压的文件根目录下,新建一个my.ini文 ...

  7. 应用Xml.Linq读xml文件

    c#提供了System.Xml.Linq操作xml文件,非常方便,本文主要介绍如何应用System.Xml.Linq读取xml文件. xml文本 <?xml version="1.0& ...

  8. zk-web

    Ref:https://github.com/qiuxiafei/zk-web zk-web是一个用clojure with noir and boostrap写的Zookeeper WEB UI管理 ...

  9. Apache 文件服务器

    1.安装apache服务器yum install httpd 2.启动httpd服务service httpd start 3.查看httpd服务器的版本httpd -v 4.修改访问端口和文件路径, ...

  10. Druid连接池及监控在spring中的配置

    Druid连接池及监控在spring配置如下: <bean id="dataSource" class="com.alibaba.druid.pool.DruidD ...