1.索引作用
在索引列上,除了上面提到的有序查找之外,数据库利用各种各样的快速定位技术,能够大大提高查询效率。特别是当数据量非常大,查询涉及多个表时,使用索引往往能使查询速度加快成千上万倍。
例如,有3个未索引的表t1、t2、t3,分别只包含列c1、c2、c3,每个表分别含有1000行数据组成,指为1~1000的数值,查找对应值相等行的查询如下所示。
SELECT c1,c2,c3 FROM t1,t2,t3 WHERE c1=c2 AND c1=c3
此查询结果应该为1000行,每行包含3个相等的值。在无索引的情况下处理此查询,必须寻找3个表所有的组合,以便得出与WHERE子句相配的那些行。而可能的组合数目为1000×1000×1000(十亿),显然查询将会非常慢。
如果对每个表进行索引,就能极大地加速查询进程。利用索引的查询处理如下。
(1)从表t1中选择第一行,查看此行所包含的数据。
(2)使用表t2上的索引,直接定位t2中与t1的值匹配的行。类似,利用表t3上的索引,直接定位t3中与来自t1的值匹配的行。
(3)扫描表t1的下一行并重复前面的过程,直到遍历t1中所有的行。
在此情形下,仍然对表t1执行了一个完全扫描,但能够在表t2和t3上进行索引查找直接取出这些表中的行,比未用索引时要快一百万倍。
利用索引,MySQL加速了WHERE子句满足条件行的搜索,而在多表连接查询时,在执行连接时加快了与其他表中的行匹配的速度。
2.  创建索引
在执行CREATE TABLE语句时可以创建索引,也可以单独用CREATE INDEX或ALTER TABLE来为表增加索引。
1.ALTER TABLE
ALTER TABLE用来创建普通索引、UNIQUE索引或PRIMARY KEY索引。
ALTER TABLE table_name ADD INDEX index_name (column_list)
ALTER TABLE table_name ADD UNIQUE (column_list)
ALTER TABLE table_name ADD PRIMARY KEY (column_list)
其中table_name是要增加索引的表名,column_list指出对哪些列进行索引,多列时各列之间用逗号分隔。索引名index_name可选,缺省时,MySQL将根据第一个索引列赋一个名称。另外,ALTER TABLE允许在单个语句中更改多个表,因此可以在同时创建多个索引。
2.CREATE INDEX
CREATE INDEX可对表增加普通索引或UNIQUE索引。
CREATE INDEX index_name ON table_name (column_list)
CREATE UNIQUE INDEX index_name ON table_name (column_list)
table_name、index_name和column_list具有与ALTER TABLE语句中相同的含义,索引名不可选。另外,不能用CREATE INDEX语句创建PRIMARY KEY索引。
3.索引类型
在创建索引时,可以规定索引能否包含重复值。如果不包含,则索引应该创建为PRIMARY KEY或UNIQUE索引。对于单列惟一性索引,这保证单列不包含重复的值。对于多列惟一性索引,保证多个值的组合不重复。
PRIMARY KEY索引和UNIQUE索引非常类似。事实上,PRIMARY KEY索引仅是一个具有名称PRIMARY的UNIQUE索引。这表示一个表只能包含一个PRIMARY KEY,因为一个表中不可能具有两个同名的索引。
下面的SQL语句对students表在sid上添加PRIMARY KEY索引。
复制代码 代码如下:
ALTER TABLE students ADD PRIMARY KEY (sid)
4.  删除索引
可利用ALTER TABLE或DROP INDEX语句来删除索引。类似于CREATE INDEX语句,DROP INDEX可以在ALTER TABLE内部作为一条语句处理,语法如下。
DROP INDEX index_name ON talbe_name
ALTER TABLE table_name DROP INDEX index_name
ALTER TABLE table_name DROP PRIMARY KEY
其中,前两条语句是等价的,删除掉table_name中的索引index_name。
第3条语句只在删除PRIMARY KEY索引时使用,因为一个表只可能有一个PRIMARY KEY索引,因此不需要指定索引名。如果没有创建PRIMARY KEY索引,但表具有一个或多个UNIQUE索引,则MySQL将删除第一个UNIQUE索引。
如果从表中删除了某列,则索引会受到影响。对于多列组合的索引,如果删除其中的某列,则该列也会从索引中删除。如果删除组成索引的所有列,则整个索引将被删除。
5.查看索引
mysql> show index from tblname;
mysql> show keys from tblname;
· Table
表的名称。
· Non_unique
如果索引不能包括重复词,则为0。如果可以,则为1。
· Key_name
索引的名称。
· Seq_in_index
索引中的列序列号,从1开始。
· Column_name
列名称。
· Collation
列以什么方式存储在索引中。在MySQL中,有值‘A'(升序)或NULL(无分类)。
· Cardinality
索引中唯一值的数目的估计值。通过运行ANALYZE TABLE或myisamchk -a可以更新。基数根据被存储为整数的统计数据来计数,所以即使对于小型表,该值也没有必要是精确的。基数越大,当进行联合时,MySQL使用该索引的机会就越大。
· Sub_part
如果列只是被部分地编入索引,则为被编入索引的字符的数目。如果整列被编入索引,则为NULL。
· Packed
指示关键字如何被压缩。如果没有被压缩,则为NULL。
· Null
如果列含有NULL,则含有YES。如果没有,则该列含有NO。
· Index_type
用过的索引方法(BTREE, FULLTEXT, HASH, RTREE)。
· Comment

mysql索引处理的更多相关文章

  1. 深入MySQL索引

    MySQL索引作为数据库优化的常用手段之一在项目优化中经常会被用到, 但是如何建立高效索引,有效的使用索引以及索引优化的背后到底是什么原理?这次我们深入数据库索引,从索引的数据结构开始说起. 索引原理 ...

  2. MySQL 索引

    MySQL索引的建立对于MySQL的高效运行是很重要的,索引可以大大提高MySQL的检索速度. 打个比方,如果合理的设计且使用索引的MySQL是一辆兰博基尼的话,那么没有设计和使用索引的MySQL就是 ...

  3. MYSQL索引结构原理、性能分析与优化

    [转]MYSQL索引结构原理.性能分析与优化 第一部分:基础知识 索引 官方介绍索引是帮助MySQL高效获取数据的数据结构.笔者理解索引相当于一本书的目录,通过目录就知道要的资料在哪里, 不用一页一页 ...

  4. MySQL索引原理及慢查询优化

    原文:http://tech.meituan.com/mysql-index.html 一个慢查询引发的思考 select count(*) from task where status=2 and ...

  5. 【转】MySQL索引背后的数据结构及算法原理

    摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ...

  6. [转]MySQL索引背后的数据结构及算法原理

    摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ...

  7. MySQL索引类型总结和使用技巧以及注意事项

    索引是快速搜索的关键.MySQL索引的建立对于MySQL的高效运行是很重要的.下面介绍几种常见的MySQL索引类型 在数据库表中,对字段建立索引可以大大提高查询速度.假如我们创建了一个 mytable ...

  8. MySQL索引背后的数据结构及算法原理【转】

    本文来自:张洋的MySQL索引背后的数据结构及算法原理 摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持 ...

  9. mysql索引总结----mysql 索引类型以及创建

    文章归属:http://feiyan.info/16.html,我想自己去写了,但是发现此君总结的非常详细.直接搬过来了 关于MySQL索引的好处,如果正确合理设计并且使用索引的MySQL是一辆兰博基 ...

  10. Mysql 索引实现原理. 聚集索引, 非聚集索引

    Mysql索引实现: B-tree,B是balance,一般用于数据库的索引.使用B-tree结构可以显著减少定位记录时所经历的中间过程,从而加快存取速度.而B+tree是B-tree的一个变种,My ...

随机推荐

  1. 探索sklearn | 鸢尾花数据集

    1 鸢尾花数据集背景 鸢尾花数据集是原则20世纪30年代的经典数据集.它是用统计进行分类的鼻祖. sklearn包不仅囊括很多机器学习的算法,也自带了许多经典的数据集,鸢尾花数据集就是其中之一. 导入 ...

  2. 派(Dispatch)

    单派与多派 (Single Dispatch and Multi Dispatch) "检查一个数据项的类型,并据此去调用某个适当的过程称为基于类型的分派". 上面是来自<计 ...

  3. 转:攻击JavaWeb应用[6]-程序架构与代码审计

    转:http://static.hx99.net/static/drops/tips-429.html 攻击JavaWeb应用[6]-程序架构与代码审计 园长 · 2013/08/12 16:53 注 ...

  4. Bzoj1015/洛谷P1197 [JSOI2008]星球大战(并查集)

    题面 Bzoj 洛谷 题解 考虑离线做法,逆序处理,一个一个星球的加入.用并查集维护一下连通性就好了. 具体来说,先将被消灭的星球储存下来,先将没有被消灭的星球用并查集并在一起,这样做可以路径压缩,然 ...

  5. 关于windows环境下cordova命令行无法启动adb.exe的解决办法

    使用phonegap开发手机APP,常常需要更改代码之后进行调试,使用安卓模拟器每次启动非常缓慢,而且不能保证最终在真机上的效果.所以一般都采用真机进行调试. 搭建真机的调试环境这里就不再赘述了,网上 ...

  6. python搜索引擎(转)

    用python如何实现一个站内搜索引擎? 先想想搜索引擎的工作流程: 1.网页搜集.用深度或者广度优先的方法搜索某个网站,保存下所有的网页,对于网页的维护采用定期搜集和增量搜集的方式. 2.建立索引库 ...

  7. [BZOJ4013][HNOI2015]实验比较(树形DP)

    4013: [HNOI2015]实验比较 Time Limit: 5 Sec  Memory Limit: 512 MBSubmit: 756  Solved: 394[Submit][Status] ...

  8. [AGC012E]Camel and Oases

    题意:有$n$个数轴上的绿洲,给定它们的坐标,有一只骆驼想要访问所有绿洲,当它的驼峰容量为$V$时,它可以走到和当前绿洲距离$\leq V$的绿洲,并可以继续走,它也可以用一次跳跃到达任意一个绿洲,只 ...

  9. 【拓扑排序】【bitset】Gym - 101128A - Promotions

    给你一张DAG,若选择u点,则必须先选择所有能到达其的点.问你在选择A个点的情况下,哪些点必选:选择B个点的情况下,哪些点必选:选择B个点的情况下,哪些点一定不选. 选择A个点的情况,必选的点是那些其 ...

  10. 【期望DP+高斯消元】BZOJ3270-博物馆

    [题目大意] 有m条走廊连接的n间房间,并且满足可以从任何一间房间到任何一间别的房间.两个男孩现在分别处在a,b两个房间,每一分钟有Pi 的概率在这分钟内不去其他地方(即呆在房间不动),有1-Pi 的 ...