[51nod1357]密码锁 暨 GDOI2018d1t2
有一个密码锁,其有N位,每一位可以是一个0~9的数字,开启密码锁需要将锁上每一位数字转到解锁密码一致。这个类似你旅行用的行李箱上的密码锁,密码锁的每一位其实是一个圆形转盘,上面依次标了0,1,...9,对每一位来说可以正向或者逆向拨动,正向拨动时原有数字x会变成新的数字(x+1 mod 10),例如1->2,2->3,9->0;同理逆向拨动变为(x-1 mod 10)即9->8,5->4,0->9。定义对密码锁的一次操作:选择一个连续的区间[L,R],可以只包含一位即L==R,将这个区间的所有数字正向拨动或逆向拨动一次,注意要么全部正着拨,要么全逆着。例如:12397正向后变成23408,逆向后变成01286。给出密码锁初始和解锁需要的终止状态,问最少多少次操作能解锁。
Input
多组测试数据,第一行一个整数T,表示测试数据数量,1<=T<=5
每组测试数据有相同的结构构成:
每组数据有两行构成,第一行是密码锁的初始状态S,第二行是解锁的终止状态E,其中1<=len(S)=len(E)<=2500,且都由0~9构成
Output
每组数据一行输出,即最少需要的操作数。
简化分析,先对每一位重映射,目标转化为第i位需要正转L次变成目标位。简单的说就是把目标串变成'0000....000000000'。
第二次转化,因为目标是把所有的位置0,所以我们定义NewBit[i] = (Bit[i]-Bit[i-1]) mod 10;NewBit[0]=Bit[0]
Bit[]={0,0,0,.....,0}等价NewBit[]={0,0,.........,0},两个问题等价对Bit[]的[L,R]区间整体位移,等价为对NewBit[]中NewBit[L]与NewBit[R]两个量操作,一个+1,一个-1.其中R=N-1时,没有R+1这项,只有NewBit[L]自己动。一次影响两个项,很容易想到贪心,每个NewBit[]只网一个方向变,即将一些项往正方向转,一些往负方向转,他们两类可以配对,若正的比负的多,用多出来的与R=N配对即可。
在NewBit[]中做一个简单N^2dp背包即可以求解。
具体DP的话就是f[i][j]表示处理完前i个数,正转操作的数量为j时,负方向最少要转多少次。
看了别人的AC代码其实也可以不用DP的样子...每次拿 需要正转次数最多 和需要负转次数最多的去强行配对似乎就行了?
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
#include<cstdlib>
#define ll long long
#define ull unsigned long long
#define ui unsigned int
#define d double
#define ld long double
const int maxn=,modd=; int a[maxn],add[maxn],dec[maxn],pr[maxn],aft[maxn],f[maxn*];
int i,j,k,n,m;
char s[maxn],t[maxn]; int ra,fh;char rx;
inline int read(){
rx=getchar(),ra=,fh=;
while(rx<''&&rx!='-')rx=getchar();
if(rx=='-')fh=-,rx=getchar();
while(rx>='')ra=ra*+rx-,rx=getchar();return ra*fh;
} inline int min(int a,int b){return a<b?a:b;}
inline int max(int a,int b){return a>b?a:b;}
inline void mins(int &a,int b){if(b<a)a=b;}
inline int MOD(int x){return x<?x+:x>?x-:x;}
int main(){
for(int T=read();T;T--){
scanf("%s%s",s+,t+);n=strlen(s+);int tmp;
for(i=;i<=n;i++)a[i]=MOD(t[i]-s[i]),add[i]=MOD(a[i]-a[i-]),dec[i]=-add[i],pr[i]=pr[i-]+add[i];
for(i=n,aft[n+]=;i;i--)aft[i]=aft[i+]+dec[i]; // for(i=1;i<=n;i++)printf(" %d",a[i]);puts(""); memset(f,,(pr[n]+)<<);
f[]=;
for(i=;i<=n;i++)if(add[i]){
tmp=dec[i];
for(j=pr[i],k=j-add[i];k>=;j--,k--)
mins(f[j]+=tmp,f[k]);
while(j>=)f[j--]+=tmp;
}
int ans=1e9;
for(i=;i<=pr[n]&&i<ans;i++)mins(ans,max(i,f[i]));
printf("%d\n",ans);
}
}
2018.4 UPD: 达成成就:2016年(嘴巴上)A掉GDOI2018的题目。
[51nod1357]密码锁 暨 GDOI2018d1t2的更多相关文章
- [51nod1357]密码锁
有一个密码锁,其有N位,每一位可以是一个0~9的数字,开启密码锁需要将锁上每一位数字转到解锁密码一致.这个类似你旅行用的行李箱上的密码锁,密码锁的每一位其实是一个圆形转盘,上面依次标了0,1,...9 ...
- 2014嘉杰信息杯ACM/ICPC湖南程序设计邀请赛暨第六届湘潭市程序设计竞赛
比赛链接: http://202.197.224.59/OnlineJudge2/index.php/Contest/problems/contest_id/36 题目来源: 2014嘉杰信息杯ACM ...
- openjudge8469特殊密码锁[贪心]
描述 有一种特殊的二进制密码锁,由n个相连的按钮组成(n<30),按钮有凹/凸两种状态,用手按按钮会改变其状态. 然而让人头疼的是,当你按一个按钮时,跟它相邻的两个按钮状态也会反转.当然,如果你 ...
- 【6年开源路】海王星给你好看!FineUI v4.0正式版暨《FineUI3to4一键升级工具》发布!
去年10-28号,我发布了一篇文章<海王星给你好看!FineUI v4.0公测版发布暨<你找BUG我送书>活动开始>,标志着FineUI开始向4.0版本迈进.经过4个月3个公测 ...
- 2017亚洲VR&AR博览会暨高峰论坛
2017亚洲VR&AR博览会暨高峰论坛 2017 Asia VR&AR Fair & Summit(VR&AR Fair 2017) 活动介绍活动时间: 2017年3月 ...
- NOI OpenJudge 8469 特殊密码锁 Label贪心
描述 有一种特殊的二进制密码锁,由n个相连的按钮组成(n<30),按钮有凹/凸两种状态,用手按按钮会改变其状态. 然而让人头疼的是,当你按一个按钮时,跟它相邻的两个按钮状态也会反转.当然,如果你 ...
- 【转】ACM/ICPC生涯总结暨退役宣言—alpc55
转自:http://hi.baidu.com/accplaystation/item/ca4c2ec565fa0b7fced4f811 ACM/ICPC生涯总结暨退役宣言—alpc55 前言 早就该写 ...
- Android 九宫格密码锁进入程序
设置九宫格密码锁进入程序,设置,重置,取消等,安卓巴士地址http://www.apkbus.com/forum.php?mod=viewthread&tid=182620&extra ...
- iOS开发——高级技术&密码锁功能的实现
密码锁功能的实现 一个ios手势密码功能实现 ipad/iphone 都可以用 没有使用图片,里面可以通过view自己添加 keychain做的数据持久化,利用苹果官方KeychainItemWrap ...
随机推荐
- 【转】cve-2013-2094 perf_event_open 漏洞分析
cve-2013-2094是于2013年4月前后发现的linux kernel本地漏洞,该漏洞影响3.8.9之前开启了PERF_EVENT的linux系统.利用该漏洞,通过perf_event_ope ...
- 【Educational Codeforces Round20】
这场edu有点简单…… 所以题目可能也有点奇奇怪怪的. A.随意构造一下,可以发现只有当填满都不行时才可能无解. #include<bits/stdc++.h> using namespa ...
- JS函数和变量名称冲突
在JS中如果函数名与变量名冲突,JS是怎么执行的? <script> console.log(sum);//function sum(){} function sum(){} var su ...
- Kettle使用介绍——Kettle的安装与基本使用
下面的链接是原文 http://www.cnblogs.com/limengqiang/archive/2013/01/16/KettleApply1.html
- C# Merge into的使用详解
Merge是一个非常有用的功能,类似于Mysql里的insert into on duplicate key. Oracle在9i引入了merge命令, 通过这个merge你能够在一个SQL语句中对一 ...
- react native 手势响应
参考地址:https://www.jianshu.com/p/935e5c6a5064 官方文档地址:https://facebook.github.io/react-native/docs/panr ...
- python之sqlite3使用详解
Python SQLITE数据库是一款非常小巧的嵌入式开源数据库软件,也就是说没有独立的维护进程,所有的维护都来自于程序本身.它使用一个文件存储整个数据库,操 作十分方便.它的最大优点是使用方便,功能 ...
- 转:LLVM与Clang的概述及关系
转:http://www.cnblogs.com/saintlas/p/5738739.html LLVM是构架编译器(compiler)的框架系统,以C++编写而成,用于优化以任意程序语言 ...
- 线段树+扫描线【bzoj1645】[USACO07OPEN]城市的地平线City Horizon
Description 约翰带着奶牛去都市观光.在落日的余晖里,他们看到了一幢接一幢的摩天高楼的轮廓在地平线 上形成美丽的图案.以地平线为 X 轴,每幢高楼的轮廓是一个位于地平线上的矩形,彼此间可能有 ...
- 洛谷——P2035 iCow
P2035 iCow 题目描述 被无止境的农活压榨得筋疲力尽后,Farmer John打算用他在MP3播放器市场新买的iCow来听些音乐,放松一下.FJ的iCow里存了N(1 <= N < ...