浅谈分布式CAP定理
互联网发展到现在,由于数据量大、操作并发高等问题,大部分网站项目都采用分布式的架构。而分布式系统最大的特点数据分散,在不同网络节点在某些时刻(数据未同步完,数据丢失),数据会不一致。
在2000年,Eric Brewer教授在PODC的研讨会上提出了一个猜想:一致性、可用性和分区容错性三者无法在分布式系统中被同时满足,并且最多只能满足其中两个!
在2002年,Lynch证明其猜想,上升为定理。被这就是大家所认知的CAP定理。
CAP是所有分布式数据库的设计标准。例如Zookeeper、Redis、HBase等的设计都是基于CAP理论的。
CAP定义
所谓的CAP就是分布式系统的三个特性:
- Consistency,一致性。所有分布式节点的数据是否一致。
- Availability,可用性。在部分节点有问题的情况(数据不一致、节点故障)下,是否能继续响应服务(可用)。
- Partition tolerance,分区容错性。允许在节点(分区)数据不一致的情况。
深入理解
有A、B、C三个分布式数据库。
当A、B、C的数据是完全相同,那么就符合定理中的Consistency(一致性)。
假如A的数据与B的数据不相同,但是整体的服务(包含A、B、C的整体)没有宕机,依然可以对外系统服务,那么就符合定理中的Availability(可用性)。
分布式数据库是没有办法百分百时刻保持各个节点数据一致的。假设一个用户再A库上更新了一条记录,在更新完这一刻,A与B、C库的数据是不一致的。这种情况在分布式数据库上是必然存在的。这就是Partition tolerance(分区容错性)
当数据不一致的时候,必定是满足分区容错性,如果不满足,那么这个就不是一个可靠的分布式系统。
然而在数据不一致的情况下,系统要么选择优先保持数据一致性,这样的话。系统首先要做的是数据的同步操作,此时需要暂停系统的响应。这就是满足CP。
若系统优先选择可用性,那么在数据不一致的情况下,会在第一时间放弃一致性,让整体系统依然能运转工作。这就是AP。
所以,分布式系统在通常情况下,要不就满足CP,要不就满足AP。
那么有没有满足CA的呢?有,当分布式节点为1的时候,不存在P,自然就会满足CA了。
例子
上面说到,分区容错性是分布式系统中必定要满足的,需要权衡的是系统的一致性与可用性。那么常见的分布式系统是基于怎样的权衡设计的。
- Zookeeper
保证CP。当主节点故障的时候,Zookeeper会重新选主。此时Zookeeper是不可用的,需要等待选主结束才能重新提供注册服务。显然,Zookeeper在节点故障的时候,并没有满足可用性的特性。在网络情况复杂的生产环境下,这样的的情况出现的概率也是有的。一旦出现,如果依赖Zookeeper的部分会卡顿,在大型系统上,很容易引起系统的雪崩。这也是大型项目不选Zookeeper当注册中心的原因。 - Eureka
保证AP。在Eureka中,各个节点是平等的,它们相互注册。挂掉几个节点依然可以提供注册服务的(可以配置成挂掉的比例),如果连接的Eureka发现不可用,会自动切换到其他可用的几点上。另外,当一个服务尝试连接Eureka发现不可用的时候,切换到另外一个Eureka服务上,有可能由于故障节点未来得及同步最新配置,所以这个服务读取的数据可能不是最新的。所以当不要求强一致性的情况下,Eureka作为注册中心更为可靠。 - Git
其实Git也是也是分布式数据库。它保证的是CP。很容易猜想到,云端的Git仓库于本地仓库必定是要保证数据的一致性的,如果不一致会先让数据一致再工作。当你修改完本地代码,想push代码到Git仓库上时,假如云端的HEAD与本地的HEAD不一致的时候,会先同步云端的HEAD到本地HEAD,再把本地的HEAD同步到云端。最终保证数据的一致性。
更多技术文章、精彩干货,请关注
个人博客:zackku.com
微信公众号:Zack说码
浅谈分布式CAP定理的更多相关文章
- [转帖]浅谈分布式一致性与CAP/BASE/ACID理论
浅谈分布式一致性与CAP/BASE/ACID理论 https://www.cnblogs.com/zhang-qc/p/6783657.html ##转载请注明 CAP理论(98年秋提出,99年正式发 ...
- 【转】浅谈分布式服务协调技术 Zookeeper
非常好介绍Zookeeper的文章, Google的三篇论文影响了很多很多人,也影响了很多很多系统.这三篇论文一直是分布式领域传阅的经典.根据MapReduce,于是我们有了Hadoop:根据GFS, ...
- 浅谈分布式消息技术 Kafka(转)
一只神秘的程序猿. Kafka的基本介绍 Kafka是最初由Linkedin公司开发,是一个分布式.分区的.多副本的.多订阅者,基于zookeeper协调的分布式日志系统(也可以当做MQ系统),常见可 ...
- 浅谈分布式消息技术 Kafka
Kafka的基本介绍Kafka是最初由Linkedin公司开发,是一个分布式.分区的.多副本的.多订阅者,基于zookeeper协调的分布式日志系统(也可以当做MQ系统),常见可以用于web/ngin ...
- 搞懂分布式技术21:浅谈分布式消息技术 Kafka
搞懂分布式技术21:浅谈分布式消息技术 Kafka 浅谈分布式消息技术 Kafka 本文主要介绍了这几部分内容: 1基本介绍和架构概览 2kafka事务传输的特点 3kafka的消息存储格式:topi ...
- 分布式CAP定理,为什么不能同时满足三个特性?
在弄清楚这个问题之前,我们先了解一下什么是分布式的CAP定理. 根据百度百科的定义,CAP定理又称CAP原则,指的是在一个分布式系统中,Consistency(一致性). Availability(可 ...
- 分布式CAP定理
根据百度百科的定义,CAP定理又称CAP原则,指的是在一个分布式系统中,Consistency(一致性). Availability(可用性).Partition tolerance(分区容错性),最 ...
- 分布式CAP定理(转)
在弄清楚这个问题之前,我们先了解一下什么是分布式的CAP定理. 根据百度百科的定义,CAP定理又称CAP原则,指的是在一个分布式系统中,Consistency(一致性). Availability(可 ...
- 浅谈分布式共识算法raft
前言:在分布式的系统中,存在很多的节点,节点之间如何进行协作运行.高效流转.主节点挂了怎么办.如何选主.各节点之间如何保持一致,这都是不可不面对的问题,此时raft算法应运而生,专门 用来解决上述问题 ...
随机推荐
- parseInt函数
1.概念 解析字符串,返回一个整数 2.说明 接收两个参数:需要转化的字符串.需要解析的数字基数,介于2~36之间(若该值神略或为0,数字将以10为基数解析:若参数大于36或小于2则返回NaN) pa ...
- st2-045漏洞利用poc
use LWP::UserAgent; undef $/; ){print "Use:poc.pl http://target/index.action\n";exit;} my ...
- skb管理函数之skb_clone、pskb_copy、skb_copy
skb_clone--只复制skb描述符本身,如果只修改skb描述符则使用该函数克隆: pskb_copy--复制skb描述符+线性数据区域(包括skb_shared_info),如果需要修改描述符以 ...
- freemark学习
学习地址: http://blog.csdn.net/hejinxu/article/details/6694890 对freemarker的用法与语法进行了详细的讲解 http://freema ...
- DateTimeToUnix/UnixToDateTime 对接时间转换
问题,通过毫秒数来解析出时间:(很多对接的时候经常需要用到) <?php $MyJson = '{"jingdong_vas_subscribe_get_responce": ...
- Simplify Path——简单经典的预处理
Given an absolute path for a file (Unix-style), simplify it. For example,path = "/home/", ...
- 将Sphinx的日志放置到/dev/shm里需要注意的事情
可以采用定时器控制,清空日志的办法: 几种快速清空文件内容的方法: $ : > filename #其中的 : 是一个占位符, 不产生任何输出. $ > filename $ echo “ ...
- 微信小程序-ios系统-下拉上拉出现白色,如何处理呢?
这几天做小程序,有些页面都是全屏的背景,在安卓上背景是固定的,而在ios上上拉下拉出现白色,测试说体验不太好,一开始我以为是下拉上拉刷新造成的,关闭了依然是这样.为了体验好点,可以按一下解决: 方式一 ...
- Linux和Windows双系统安装要点
这里主要说下CentOS和Windows7的双系统安装遇到的一些问题 一.磁盘分区 这个不得不说下在Windows下坑爹的设定了,如果是用默认的磁盘划分,系统会自己先划出一个100M左右的区,关键还是 ...
- Python urllib2 设置超时时间并处理超时异常
可以使用 except: 捕获任何异常,包括 SystemExit 和 KeyboardInterupt,不过这样不便于程序的调试和使用 最简单的情况是捕获 urllib2.URLError try: ...