很简洁的题目。求出x^2%n=1的所有x<=n的值。 n<=2e9.

直接枚举x一定是超时的。 看看能不能化成有性质的式子。

有 (x+1)(x-1)%n==0,设n=a*b,那么一定有x+1=k1a,x-1=k2b. 不妨设a<=b.那么就能O(sqrt(n))枚举a。

然后再枚举x,验证x是否满足这两个式子。注意不能令x=k1a-1.由于a比较小,枚举x=k2b+1,k2b-1即可。

另外set很好用啊。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi 3.1415926535
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... set<LL>::iterator it;
set<LL>S; int main ()
{
LL a, b, x, n;
scanf("%lld",&n);
for (int i=; i*i<=n; ++i) {
if (n%i) continue;
a=i; b=n/i;
for (int k=; (x=b*k+)<n; ++k) if ((x+)%a==) S.insert(x);
for (int k=; (x=b*k-)<n; ++k) if ((x-)%a==) S.insert(x);
}
for (it=S.begin(); it!=S.end(); ++it) printf("%lld\n",*it);
return ;
}

BZOJ 1406 密码箱(数论)的更多相关文章

  1. BZOJ 1406 密码箱

    直接两层枚举就行了. 避免排序可以用set. #include<iostream> #include<cstdio> #include<cstring> #incl ...

  2. BZOJ 1406: [AHOI2007]密码箱

    二次联通门 : BZOJ 1406: [AHOI2007]密码箱 /* BZOJ 1406: [AHOI2007]密码箱 数论 要求 x^2 ≡ 1 (mod n) 可以转换为 x ^ 2 - k * ...

  3. BZOJ 1406: [AHOI2007]密码箱( 数论 )

    (x+1)(x-1) mod N = 0, 枚举N的>N^0.5的约数当作x+1或者x-1... ------------------------------------------------ ...

  4. bzoj 1406: [AHOI2007]密码箱 二次剩餘

    1406: [AHOI2007]密码箱 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 701  Solved: 396[Submit][Status] D ...

  5. bzoj 1406 数论

    首先问题的意思就是在找出n以内的所有x^2%n=1的数,那么我们可以得到(x+1)(x-1)=y*n,那么我们知道n|(x+1)(x-1),我们设n=a*b,那么我们对于任意的a,我们满足n%a==0 ...

  6. 【BZOJ 1406】 [AHOI2007]密码箱

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] \(x^2%n=1\) \(x^2-1 = k*n\) \((x+1)*(x-1) % n == 0\) 设\(n=a*b\) 对于 ...

  7. BZOJ 1406: [AHOI2007]密码箱 exgcd+唯一分解定理

    推出来了一个解法,但是感觉复杂度十分玄学,没想到秒过~ Code: #include <bits/stdc++.h> #define ll long long #define N 5000 ...

  8. BZOJ 2142 礼物 数论

    这道题是求组合数终极版. C(n,m) mod P n>=1e9 m>=1e9 P>=1e9且为合数且piqi<=1e5 拓展lucas定理. 实际上就是一点数论小知识的应用. ...

  9. 【bzoj1406】 AHOI2007密码箱 数论

    在一次偶然的情况下,小可可得到了一个密码箱,听说里面藏着一份古代流传下来的藏宝图,只要能破解密码就能打开箱子,而箱子背面刻着的古代图标,就是对密码的提示.经过艰苦的破译,小可可发现,这些图标表示一个数 ...

随机推荐

  1. <简明>Markdown指南

    什么是Markdown?Markdown是一种轻量级的「标记语言」,通常为程序员群体所用,目前它已是全球最大的技术分享网站 GitHub 和技术问答网站 StackOverFlow 的御用书写格式. ...

  2. LeetCode: 60. Permutation Sequence(Medium)

    1. 原题链接 https://leetcode.com/problems/permutation-sequence/description/ 2. 题目要求 给出整数 n和 k ,k代表从1到n的整 ...

  3. MyBatis-参数处理

    1.单个参数 mybatis不会做特殊处理. #{参数名/任意名}:取出参数值. 2.多个参数 mybatis会做特殊处理. 多个参数会被封装成 一个map. key:param1...paramN, ...

  4. Java多线程之volatile与synchronized比较

    可见性: JAVA内存模型: java为了加快程序的运行效率,对一些变量的操作是在寄存器或者CPU缓存上进行的,后面再同步到主存中 看上图,线程在运行的过程中,会从主内存里面去去变量,读到自己的空间内 ...

  5. 爬虫初体验:Python+Requests+BeautifulSoup抓取广播剧

    可以看到一个DIV下放一个广播剧的信息,包括名称和地址,第一步我们先收集所有广播剧的收听地址: # 用requests的get方法访问novel_list_resp = requests.get(&q ...

  6. leetcode-数数并说

     数数并说     报数序列是指一个整数序列,按照其中的整数的顺序进行报数,得到下一个数.其前五项如下: 1. 1 2. 11 3. 21 4. 1211 5. 111221 1 被读作  " ...

  7. 【转】MMORPG游戏服务器技能系统设计:表格字段与技能程序框架

    本文主要从一个程序员的角度阐述一下mmorpg服务器技能系统的程序框架设计,最近在做这个,就当做一个总结吧,其中某些概念可能没有解释清楚,欢迎大家拍砖讨论~ 技能其实是战斗系统的一个组成部分,战斗基本 ...

  8. JavaScript 数组操作方法 和 ES5数组拓展

    JavaScript中数组有各种操作方法,以下通过举例来说明各种方法的使用: 数组操作方法 push 在数组最后添加一个元素 var arr=[3,4,5,6] console.log(arr) // ...

  9. OpenMPI源码剖析2:ompi_mpi_errors_are_fatal_comm_handler函数

    上一篇文章说道,初始化失败会有一个函数调用: ompi_mpi_errors_are_fatal_comm_handler(NULL, NULL, message); 所以这里简单地进入了 ompi_ ...

  10. docker创建redis镜像

    pull redis 镜像 创建redis的镜像有几种方式,可以直接从仓库中拉取,也可以采用dockerfile文件自己编译创建. 基于已有的redis镜像,docker可以采用run,或者creat ...