内存限制:256 MiB时间限制:500 ms标准输入输出
题目类型:传统评测方式:文本比较
上传者: hzwer

题目描述

给出一个长为 nn 的数列,以及 nn 个操作,操作涉及区间加法,区间求和。

输入格式

第一行输入一个数字 nn。

第二行输入 nn 个数字,第 ii 个数字为 a_iai​,以空格隔开。

接下来输入 nn 行询问,每行输入四个数字 \mathrm{opt}opt、ll、rr、cc,以空格隔开。

若 \mathrm{opt} = 0opt=0,表示将位于 [l, r][l,r] 的之间的数字都加 cc。

若 \mathrm{opt} = 1opt=1,表示询问位于 [l, r][l,r] 的所有数字的和 \bmod (c+1)mod(c+1)。

输出格式

对于每次询问,输出一行一个数字表示答案。

样例

样例输入

4
1 2 2 3
0 1 3 1
1 1 4 4
0 1 2 2
1 1 2 4

样例输出

1
4

数据范围与提示

对于 100\%100% 的数据,1 \leq n \leq 50000, -2^{31} \leq \mathrm{others}1≤n≤50000,−231≤others、\mathrm{ans} \leq 2^{31}-1ans≤231−1。

代码;

 //#6280. 数列分块入门 4-区间加法,区间求和
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=5e4+; int n,m,pos[maxn];
ll a[maxn],b[maxn],tag[maxn]; void update(int l,int r,ll c)
{
for(int i=l;i<=min(pos[l]*m,r);i++){
a[i]+=c;
b[pos[l]]+=c;
}
if(pos[l]!=pos[r]){
for(int i=(pos[r]-)*m+;i<=r;i++){
a[i]+=c;
b[pos[r]]+=c;
}
}
for(int i=pos[l]+;i<pos[r];i++){
tag[i]+=c;
}
} ll query(int l,int r)
{
ll ans=;
for(int i=l;i<=min(pos[l]*m,r);i++){
ans+=a[i]+tag[pos[l]];
}
if(pos[l]!=pos[r]){
for(int i=(pos[r]-)*m+;i<=r;i++){
ans+=a[i]+tag[pos[r]];
}
}
for(int i=pos[l]+;i<pos[r];i++){
ans+=b[i]+tag[i]*m;
}
return ans;
} int main()
{
scanf("%d",&n);
m=sqrt(n);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
b[i]=a[i];
pos[i]=(i-)/m+;
}
for(int i=;i<=m+;i++){
int cnt=;
for(int j=(i-)*m+;j<=min(i*m,n);j++){
cnt+=a[j];
}
b[i]=cnt;
}
for(int i=;i<=n;i++){
int op,l,r;
ll c;
scanf("%d%d%d%lld",&op,&l,&r,&c);
if(op==){
update(l,r,c);
}
else{
printf("%lld\n",query(l,r)%(c+));
}
}
} /*
10
1 3 4 2 5 7 11 3 5 1
0 1 5 1
1 1 7 2
0 3 9 1
1 4 8 7
1 1 10 6
1 3 5 3
1 5 10 7
1 6 10 6
1 2 7 4
1 2 7 5 2
3
5
1
6
3
1
5
*/

LOJ #6280. 数列分块入门 4-分块(区间加法、区间求和)的更多相关文章

  1. 树状数组区间加法&区间求和操作

    树状数组区间加法&区间求和操作 一般的树状数组解决区间加&单点询问并不复杂 但是要解决区间求和... 我们假设原数组是\(\{a_i\}\),差分数组\(\{d_i=a_i-a_{i- ...

  2. LOJ-6279-数列分块入门3(分块, 二分)

    链接: https://loj.ac/problem/6279 题意: 给出一个长为 的数列,以及 个操作,操作涉及区间加法,询问区间内小于某个值 的前驱(比其小的最大元素). 思路: 同样的分块加二 ...

  3. LOJ-6278-数列分块入门2(分块)

    链接: https://loj.ac/problem/6278 题意: 给出一个长为 的数列,以及 个操作,操作涉及区间加法,询问区间内小于某个值 的元素个数. 思路: 分块,用vector维护每个区 ...

  4. LOJ-6277-数列分块入门1(分块)

    链接: https://loj.ac/problem/6277 题意: 给出一个长为 的数列,以及 个操作,操作涉及区间加法,单点查值. 思路: 线段树可以解决,用来学习分块. 分块概念就是,将序列分 ...

  5. bzoj 1798: [Ahoi2009]Seq 维护序列seq 线段树 区间乘法区间加法 区间求和

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeO ...

  6. LibreOJ 6280 数列分块入门 4(分块区间加区间求和)

    题解:分块的区间求和比起线段树来说实在是太好写了(当然,复杂度也高)但这也是没办法的事情嘛.总之50000的数据跑了75ms左右还是挺优越的. 比起单点询问来说,区间询问和也没有复杂多少,多开一个su ...

  7. LOJ#6280. 数列分块入门 4

    另外开一个数组维护每一个块内的总和. 给区间加值是,残余的块一个一个点更新,整个的块一次性更新 查询的时候也是,残余的块一个一个点加,整个的块一次性加 #include<map> #inc ...

  8. LOJ.6281.数列分块入门5(分块 区间开方)

    题目链接 int内的数(也不非得是int)最多开方4.5次就变成1了,所以还不是1就暴力,是1就直接跳过. #include <cmath> #include <cstdio> ...

  9. LOJ.6284.数列分块入门8(分块)

    题目链接 \(Description\) 给出一个长为n的数列,以及n个操作,操作涉及区间询问等于一个数c的元素,并将这个区间的所有元素改为c. \(Solution\) 模拟一些数据可以发现,询问后 ...

随机推荐

  1. uboot 的命令体系

    1.代码位置 (1)uboot命令体系的实现代码在uboot/common/cmd_xxx.c中.有若干个.c文件和命令体系有关.(还有command.c  main.c也是和命令有关的) 2.传参方 ...

  2. 同一台服务器(电脑)运行多个Tomcat

    同一台电脑运行不能同时运行多个未修改过配置tomcat的原因在于:一台电脑的一个端口只能被一个程序使用,多个tomcat启动会因为端口号号被占用的原因而启动失败. 如果想要在一台电脑上同时运行多个to ...

  3. CMDB资产管理系统开发【day26】:CMDB上节回顾

    一.上节知识点回顾 服务器设计了一个表结构 开发了一个客户端 二.后台创建缓存区表 客户端连接服务器,在服务器的下面看报错信息 因为URL都没有写,所以我找不到呀 1.在MadKing\url.py ...

  4. Hadoop 介绍

    1.Hadoop简介 Hadoop[hædu:p]实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS.HDFS有高容错性的特点,并且设计用来部署在低 ...

  5. 深度解析Java多线程的内存模型

    内部java内存模型 硬件层面的内存模型 Java内存模型和硬件内存模型的联系 共享对象的可见性 资源竞速 Java内存模型很好的说明了JVM是如何在内存里工作的,JVM可以理解为java执行的一个操 ...

  6. Linux系统关闭防火墙端口

    1. 打开防火墙端口 # iptables -I INPUT -p tcp --dport -j ACCEPT # iptables -I INPUT -p tcp --dport -j ACCEPT ...

  7. 51nod 1190 最小公倍数之和 V2

    给出2个数a, b,求LCM(a,b) + LCM(a+1,b) + .. + LCM(b,b). 例如:a = 1, b = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30 ...

  8. 【vijos】P1659 河蟹王国

    [算法]线段树 [题解]区间加上同一个数+区间查询最大值.注意和谐值可以是负数,初始化ans为负无穷大. #include<cstdio> #include<algorithm> ...

  9. MySQL数据库运行环境的搭建

    第一步:安装wampserver2.5-Apache-2.4.9-Mysql-5.6.17-php5.5.12-64b文件,安装过程中可能会遇到问题,把遇到的问题代码复制粘贴到360人工服务,查找方案 ...

  10. 记一次Powershell反混淆 (1)

    样本地址: https://www.virustotal.com/#/file/6f9034646e6fcead5342f708031412e3c2efdb4fb0f37bba43133a471d1c ...