YoLo 实践(1)

by lizhen

参考代码:

keras-yolo3 ***

yolo_tensorflow

所需环境:

python3 | annconda

keras

tensorflow

configparser

目标:

使用Keras| tensorflow完成基于Yolo的车辆检测的训练;

实施方法:

(1). Yolo是目前使用比较广泛的模型之一, 在github等开源网站中有很多实现方式, 自己找一个比较靠谱的程序,对其改进. 改进方式有以下几点: (a) 训练给予VOC的模型(复现Yolov3) ; (b) 根据论文去阅读yolo

(2). 改进训练方法, 适用雨车辆检测

Step 0. 测试项目是否可以正常运行

wget https://pjreddie.com/media/files/yolov3.weights # 下载yolo的模型

python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5 # 将yolo的模型转化成适合Kears加载的格式

python yolo_video.py --image # 指定使用图片检测

运行效果图

使用VOC数据结构训练模型

Step1: 生成统一格式的标注文件和类别文件

为了方便训练, 针对每一个图片都有一种格式的标注文件:

这两种格式的文件是:

Row format: image_file_path box1 box2 ... boxN
Box 的格式 : x_min,y_min,x_max,y_max,class_id

对于VOC数据集,由于已经有了xml格式的标注文件, 仅需要转换标注的格式即可, 在此提供voc_annotation.py

vim voc_annotation.py # 修改有关VOC2007数据的路径
python voc_annotation.py # 运行有关

通过阅读voc_annotation.py文件, 可以得知:

该脚本可以将VOC2007 中标注修改成上述格式的文本;

转换的过程需要修改VOC数据集的路径;

转换后,会待当前目录(getcwd())创建有关训练和校验的标注文件:


~/workspace/keras-yolo3$ ll
-rw-rw-r-- 1 lizhen lizhen 297885 Oct 23 15:48 2007_train.txt # 产生的新文件
-rw-rw-r-- 1 lizhen lizhen 298595 Oct 23 15:48 2007_val.txt

文件的格式如下:

/keras-yolo3/VOCdevkit/VOC2007/JPEGImages/000064.jpg 1,23,451,500,2
keras-yolo3/VOCdevkit/VOC2007/JPEGImages/000066.jpg 209,187,228,230,14 242,182,274,259,14 269,188,2
95,259,14
keras-yolo3/VOCdevkit/VOC2007/JPEGImages/000073.jpg 121,143,375,460,15 2,154,64,459,15 270,155,375,
331,3 22,143,146,500,14

Step2: 加载预训练模型

为了加快训练的速度和Auc, 可以在已有的模型上进行训练,

在后期的训练中,会冻结yolo模型的前249层, 主要训练后面的高维度的特征

Freeze the first 249 layers of total 252 layers.

cd /home/lizhen/workspace/keras-yolo3 # 切换到工作目录
python convert.py -w yolov3.cfg yolov3.weights model_data/yolo_weights.h5 # 将适用于darknet的模型转换成Keras ....
__________________________________________________________________________________________________
conv2d_67 (Conv2D) (None, None, None, 2 130815 leaky_re_lu_65[0][0]
__________________________________________________________________________________________________
conv2d_75 (Conv2D) (None, None, None, 2 65535 leaky_re_lu_72[0][0]
==================================================================================================
Total params: 62,001,757
Trainable params: 61,949,149
Non-trainable params: 52,608
__________________________________________________________________________________________________
None
Saved Keras model to model_data/yolo.h5
Read 62001757 of 62001757.0 from Darknet weights.

Step3: 训练VOC数据

为了防止在训练过程中出现OOM异常, 根据问题1的提示, 可以将epoch和batch的数量降低;

对 train.py 的读取文件位置进行修改, 替换成上Step1中生成207_train.txt

python train.py # 读取2017_train.txt ,同时运行模型

~/workspace/keras-yolo3$ ls logs/001/
ep003-loss38.801-val_loss35.522.h5 ep009-loss26.373-val_loss27.126.h5 events.out.tfevents.1540299060.BoHong
ep003-loss39.940-val_loss36.366.h5 events.out.tfevents.1540294790.BoHong trained_weights_final.h5
ep006-loss29.750-val_loss28.700.h5 events.out.tfevents.1540296584.BoHong trained_weights_stage_1.h5

通过阅读train.py 可知, 经过训练以后会在./logs/0001下产生模型, 模型是** trained_weights_final.h5**

训练过程中的loss变化如下:

Step4: 测试模型

python yolo_video.py --model logs/0001/trained_weights_final.h5 --image

测试效果:

问题集合

1. Out of system memory when unfreeze all of the layers.

在训练数据的过程中(python train.py), 会因为GPU的OOM异常而提前退出训练;

根据

https://github.com/qqwweee/keras-yolo3/issues/122

中提供的信息, 可以尝试一下集中方案:

1 only train 2 classes, car and person, modify model_data/voc_classes.txt

2 batch_size = 2 & epoch = 20

3 set load_pretrained=False

4 update tensorflow to 1.8.0

附录A

ConfigParser

ConfigParser模块在python3中修改为configparser.这个模块定义了一个ConfigParser类,该类的作用是使用配置文件生效,配置文件的格式和windows的INI文件的格式相同

该模块的作用 就是使用模块中的RawConfigParser()、ConfigParser()、 SafeConfigParser()这三个方法,创建一个对象使用对象的方法对指定的配置文件做增删改查 操作。



后期准备解析yolo论文,改代码 敬请期待~

YoLo 实践(1)的更多相关文章

  1. YOLO实践初探

    学习了Andrew Ng 深度学习第三周卷积神经网络课程后,接着看了看YOLO论文,论文看得懵懵懂懂,沉不下心精雕细琢,手痒痒,迫不及待地想试一试YOLO效果.于是乎,在github上下载了ping星 ...

  2. 目标检测算法YOLO算法介绍

    YOLO算法(You Only Look Once) 比如你输入图像是100x100,然后在图像上放一个网络,为了方便讲述,此处使用3x3网格,实际实现时会用更精细的网格(如19x19).基本思想是, ...

  3. 『计算机视觉』YOLO系列总结

    网络细节资料很多,不做赘述,主要总结演化思路和解决问题. 一.YOLO 1.网络简介 YOLO网络结构由24个卷积层与2个全连接层构成,网络入口为448x448(v2为416x416),图片进入网络先 ...

  4. 目标检测:YOLO(v1 to v3)——学习笔记

    前段时间看了YOLO的论文,打算用YOLO模型做一个迁移学习,看看能不能用于项目中去.但在实践过程中感觉到对于YOLO的一些细节和技巧还是没有很好的理解,现学习其他人的博客总结(所有参考连接都附于最后 ...

  5. yolov3实践(一)

    很多博友看了我的第一篇博客yolo类检测算法解析——yolo v3,对其有了一定的认识和了解,但是并没有贴出代码和运行效果,略显苍白.因此在把篇博客理论的基础上,造就了第一篇实践文章,也就是本文.只要 ...

  6. [深度学习] 使用Darknet YOLO 模型破解中文验证码点击识别

    内容 背景 准备 实践 结果 总结 引用 背景 老规矩,先上代码吧 代码所在: https://github.com/BruceDone/darknet_demo 最近在做深度学习相关的项目的时候,了 ...

  7. 2018软工实践—Alpha冲刺(8)

    队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭鸭鸭鸭鸭鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 多次测试软件运行 学习OPENMP ...

  8. 2018软工实践—Alpha冲刺(6)

    队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭鸭鸭鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 测试服务器并行能力 学习MSI.CUDA ...

  9. 2018软工实践—Alpha冲刺(4)

    队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 协助前后端接口的开发 测试项目运行的服务器环 ...

随机推荐

  1. 移动APP的用户体验测试

    经常被问到用户体验测试,什么是用户体验测试,用户体验测试要关注的都有哪些呢,现在为大家来罗列一下: 1.横竖屏测试 在移动设备上做用户体验测试,最容易想到的就是对APP做横竖屏的测试来观察APP的显示 ...

  2. excel时间戳转化为标准日期(日期转化为日期戳)

    最近在学习python将数据导入到excel,发现日期变成数字而不是日期格式的问题. 第一眼看去肯定是excel单元格格式问题,一般excel单元格格式为常规,而常规处理日期时就显示为数字,所以就想到 ...

  3. TypeScript学习小结

    TypeScript是什么 TypeScript是由微软公司开发的一个开源JavaScript的超集,主要提供了类型系统和对ES6的支持,可以编译成纯JavaScript,主要就是对JavaScrip ...

  4. Github提交PullRequest

    Github提交PullRequest工作流程: 以Kubernetes为例 1.   Fork Kubernetes到自己的Github目录 访问:https://github.com/kubern ...

  5. 010-JedisUtils工具类模板

    redis.properties配置文件 redis.maxIdle=30 redis.minIdle=10 redis.maxTotal=100 redis.url=192.168.204.128 ...

  6. Python基础(6) - 基本语句

    Python print(在Python 3.0中就变成了函数了) print语句是把对象用文本化的形式输出到标准的输出流上. Operation  Interpretation print spam ...

  7. js 打印指定页面部分打印

    <!DOCTYPE html><html>    <head>        <meta charset="UTF-8">      ...

  8. sublime text 3 PHP 所需插件

    1. PHP代码语法验证插件:SublimeLinter 2.Bracket Highlighter 用于匹配括号,引号和html标签.对于很长的代码很有用.安装好之后,不需要设置插件会自动生效 3. ...

  9. Java - 谨慎覆盖equals

    平时很难遇到需要覆盖equals的情况. 什么时候不需要覆盖equals? 类的每个实例本质上是唯一的,我们不需要用特殊的逻辑值来表述,Object提供的equals方法正好是正确的. 超类已经覆盖了 ...

  10. 一:Linux知识整理

    一.文件系统的管理 tips:输入命令的时候要常用tab键来补全 ls 查看目录信息 ( ls / ) ls -l 等价于 ll pwd 查看当前所处的路径 cd 切换目录 (cd /) ,如果不带参 ...