前序遍历:
1.访问根节点
2.前序遍历左子树
3.前序遍历右子树


中序遍历:
1.中序遍历左子树
2.访问根节点
3.中序遍历右子树


后序遍历:
1.后序遍历左子树
2.后序遍历右子树
3.访问根节点
---------------------

package design;

import java.util.ArrayDeque;
import java.util.Queue;
import java.util.Stack; public class BinTree {
char data;
BinTree leftChild;
BinTree rightChild;
public BinTree(char c) {
data = c;
}
public static void preSearch(BinTree root){
if(root !=null){
System.out.print(root.data);
preSearch(root.leftChild);
preSearch(root.rightChild);
}
}
public static void midSearch(BinTree root){
if(root !=null){
midSearch(root.leftChild);
System.out.print(root.data);
midSearch(root.rightChild);
}else{
return;
}
}
public static void postSearch(BinTree root){
if(root !=null){
postSearch(root.leftChild);
postSearch(root.rightChild);
System.out.print(root.data);
}
}
// 先序遍历非递归
public static void preOrder(BinTree root){
Stack<BinTree> s = new Stack<BinTree>();
while(root !=null || !s.empty()){
while(root!=null){
System.out.print(root.data);
s.push(root);
root = root.leftChild;
}
if(!s.empty()){
root = s.pop();
root = root.rightChild;
}
}
}
// 中序遍历非递归
public static void midOrder(BinTree root){
Stack<BinTree> s = new Stack<BinTree>();
while(root!=null || !s.empty()){
while(root!=null){
s.push(root);
root = root.leftChild;
}
if(!s.empty()){
root =s.pop();
System.out.print(root.data);
root = root.rightChild;
}
}
}
// 后序遍历非递归
public static void postOrder(BinTree root){
Stack<BinTree> s = new Stack<BinTree>();
Stack<Integer> s2 = new Stack<Integer>();
Integer i = new Integer();
while(root!=null || !s.empty()){
while(root!=null){
s.push(root);
s2.push(new Integer());
root = root.leftChild;
}
while(!s.empty() && s2.peek().equals(i)){
s2.pop();
System.out.print(s.pop().data);
}
if(!s.empty()){
s2.pop();
s2.push(new Integer());
root =s.peek();
root = root.rightChild;
}
}
}
//计算二叉树的深度
public static int level(BinTree root){
if(root == null){
return ;
}
return level(root.leftChild)+>level(root.rightChild)+?level(root.leftChild)+:level(root.rightChild)+; }
//层序遍历二叉树
public static void levelTrav(BinTree root) {
if (root == null)
return;
Queue<BinTree> q = new ArrayDeque<BinTree>();
q.add(root);
BinTree cur;
while (!q.isEmpty()) {
cur = q.peek();
System.out.print(cur.data + " ");
if (cur.leftChild != null)
q.add(cur.leftChild);
if (cur.rightChild != null)
q.add(cur.rightChild);
q.poll();
}
}
public static void main(String[] args) {
BinTree b1 = new BinTree('a');
BinTree b2 = new BinTree('b');
BinTree b3 = new BinTree('c');
BinTree b4 = new BinTree('d');
BinTree b5 = new BinTree('e'); /**
* a
* / \
* b c
* / \
* d e
*/
b1.leftChild = b2;
b1.rightChild = b3;
b2.leftChild = b4;
b2.rightChild = b5; BinTree.preSearch(b1);
System.out.println();
BinTree.preOrder(b1);
System.out.println("========================");
BinTree.midSearch(b1);
System.out.println("");
BinTree.midOrder(b1);
System.out.println("========================");
BinTree.postSearch(b1);
System.out.println();
BinTree.postOrder(b1);
System.out.println("========================");
System.out.println(BinTree.level(b1));
System.out.println("========================");
BinTree.levelTrav(b1);
}
}

JAVA递归、非递归遍历二叉树的更多相关文章

  1. java创建二叉树并实现非递归中序遍历二叉树

    java创建二叉树并递归遍历二叉树前面已有讲解:http://www.cnblogs.com/lixiaolun/p/4658659.html. 在此基础上添加了非递归中序遍历二叉树: 二叉树类的代码 ...

  2. 二叉树的先序、中序以及后序遍历(递归 && 非递归)

    树节点定义: class TreeNode { int val; TreeNode left; TreeNode right; TreeNode(int x) { val = x; } } 递归建立二 ...

  3. 【数据结构】——搜索二叉树的插入,查找和删除(递归&非递归)

    一.搜索二叉树的插入,查找,删除 简单说说搜索二叉树概念: 二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值 若它的右 ...

  4. 最近公共祖先 LCA 递归非递归

    给定一棵二叉树,找到两个节点的最近公共父节点(LCA).最近公共祖先是两个节点的公共的祖先节点且具有最大深度.假设给出的两个节点都在树中存在. dfs递归写法 查找两个node的最近公共祖先,分三种情 ...

  5. Reverse Linked List 递归非递归实现

    单链表反转--递归非递归实现 Java接口: ListNode reverseList(ListNode head) 非递归的实现 有2种,参考 头结点插入法 就地反转 递归的实现 1) Divide ...

  6. Java实现二叉树的创建、递归/非递归遍历

    近期复习数据结构中的二叉树的相关问题,在这里整理一下 这里包含: 1.二叉树的先序创建 2.二叉树的递归先序遍历 3.二叉树的非递归先序遍历 4.二叉树的递归中序遍历 5.二叉树的非递归中序遍历 6. ...

  7. 二叉树的递归,非递归遍历(java)

    import java.util.Stack; import java.util.HashMap; public class BinTree { private char date; private ...

  8. 二叉树——遍历篇(递归/非递归,C++)

    二叉树--遍历篇 二叉树很多算法题都与其遍历相关,笔者经过大量学习.思考,整理总结写下二叉树的遍历篇,涵盖递归和非递归实现. 1.二叉树数据结构及访问函数 #include <stdio.h&g ...

  9. 树的广度优先遍历和深度优先遍历(递归非递归、Java实现)

    在编程生活中,我们总会遇见树性结构,这几天刚好需要对树形结构操作,就记录下自己的操作方式以及过程.现在假设有一颗这样树,(是不是二叉树都没关系,原理都是一样的) 1.广度优先遍历 英文缩写为BFS即B ...

  10. 二叉树的递归,非递归遍历(C++)

    二叉树是一种非常重要的数据结构,很多其它数据结构都是基于二叉树的基础演变而来的.对于二叉树,有前序.中序以及后序三种遍历方法.因为树的定义本身就是递归定义,因此采用递归的方法去实现树的三种遍历不仅容易 ...

随机推荐

  1. js正则验证数字的方法

    正则验证数字的方法: <script type="text/javascript"> function validate(){ var reg = new RegExp ...

  2. spring中的Filter使用

    https://blog.csdn.net/bibiwannbe/article/details/81302920

  3. unity学习 5.x解包

    using System.Collections;using System.Collections.Generic;using UnityEngine; public class bundleload ...

  4. 垃圾windows10更新遇到的问题

    缘由 1.win10现在必须更新,不更新不给你用,关闭自动更新的方法都失效了,如果有人知道有效的方法还请私信指教一下.. 一个延迟几天的笨方法:当出现更新并关机或更新并重启时,把电源键设置成关机. 就 ...

  5. 题解【语文1(chin1)- 理理思维】

    link 喵~珂朵莉树AC 珂朵莉树?见此处~ 这数据结构太暴力了,所以不讲了 Code: #include<iostream> #include<cstdio> #inclu ...

  6. 关于ebay平台接口(php)对接示例

    获取订单接口示例 public function importEbayOrder(){ set_time_limit(0); if(empty( $this->_ShopApiEbay-> ...

  7. CodeForces 996B World Cup(思维)

    https://codeforces.com/problemset/problem/996/B 题意: 圆形球场有n个门,Allen想要进去看比赛.Allen采取以下方案进入球场:开始Allen站在第 ...

  8. 解决安装 .net framework 发生 extracting files error 问题

    VMware虚拟机环境 WIn7 SP1下离线安装 .net framework 4.5.2 遇到 extracting files error 错误,开始以为是文件损坏,结果换 4.7, 4.8 都 ...

  9. shell_切割日志

    可以修改的:1.日志存放目录:logdir='/data/logs/'2.每个类型日志保留个数:savefiles=30 #!/bin/bashnum=$(date -d"+1 day ag ...

  10. poj-3661 Running(DP)

    http://poj.org/problem?id=3661 Description The cows are trying to become better athletes, so Bessie ...