Steady Cow Assignment
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6914   Accepted: 2387

Description

Farmer John's N (1 <= N <= 1000) cows each reside in one of B (1 <= B <= 20) barns which, of course, have limited capacity. Some cows really like their current barn, and some are not so happy.

FJ would like to rearrange the cows such that the cows are as equally happy as possible, even if that means all the cows hate their assigned barn.

Each cow gives FJ the order in which she prefers the barns. A cow's happiness with a particular assignment is her ranking of her barn. Your job is to find an assignment of cows to barns such that no barn's capacity is exceeded and the size of the range (i.e., one more than the positive difference between the the highest-ranked barn chosen and that lowest-ranked barn chosen) of barn rankings the cows give their assigned barns is as small as possible.

Input

Line 1: Two space-separated integers, N and B

Lines 2..N+1: Each line contains B space-separated integers which are exactly 1..B sorted into some order. The first integer on line i+1 is the number of the cow i's top-choice barn, the second integer on that line is the number of the i'th cow's second-choice barn, and so on.

Line N+2: B space-separated integers, respectively the capacity of the first barn, then the capacity of the second, and so on. The sum of these numbers is guaranteed to be at least N.

Output

Line 1: One integer, the size of the minumum range of barn rankings the cows give their assigned barns, including the endpoints.

Sample Input

6 4
1 2 3 4
2 3 1 4
4 2 3 1
3 1 2 4
1 3 4 2
1 4 2 3
2 1 3 2

Sample Output

2

二分长度+枚举
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1500;
int head[N],tot,S,T;
int q[N],dis[N],n,m;
int mp[N][22],cap[22];
struct node
{
    int next,v,w;
} e[N*100];
void add(int u,int v,int w)
{
    e[tot].v=v;
    e[tot].w=w;
    e[tot].next=head[u];
    head[u]=tot++;
}
bool bfs()
{
    memset(dis,-1,sizeof(dis));
    dis[S]=0;
    int l=0,r=0;
    q[r++]=S;
    while(l<r)
    {
        int u=q[l++];
        for(int i=head[u]; ~i; i=e[i].next)
        {
            int v=e[i].v;
            if(dis[v]==-1&&e[i].w>0)
            {
                q[r++]=v;
                dis[v]=dis[u]+1;
                if(v==T) return true;
            }
        }
    }
    return false;
}
int dfs(int s,int low)
{
    if(s==T||!low) return low;
    int ans=low,a;
    for(int i=head[s]; ~i; i=e[i].next)
    {
        if(e[i].w>0&&dis[e[i].v]==dis[s]+1&&(a=dfs(e[i].v,min(e[i].w,ans))))
        {
            e[i].w-=a;
            e[i^1].w+=a;
            ans-=a;
            if(!ans) return low;
        }
    }
    if(low==ans) dis[s]=-1;
    return low-ans;
}
bool solve(int l,int r)
{
    memset(head,-1,sizeof(head));
    tot=0;
    int ans=0;
    for(int i=1; i<=n; ++i) add(S,i,1),add(i,S,0);
    for(int i=1; i<=n; ++i) for(int j=l; j<=r; ++j) add(i,mp[i][j]+n,1),add(mp[i][j]+n,i,0);
    for(int i=1; i<=m; ++i) add(i+n,T,cap[i]),add(T,i+n,0);
    while(bfs()) ans+=dfs(S,1008611);
    if(ans==n) return true;
    return false;
}
int main()
{
    scanf("%d%d",&n,&m);S=0,T=n+m+1;
    for(int i=1; i<=n; ++i) for(int j=1; j<=m; ++j) scanf("%d",&mp[i][j]);
    for(int i=1; i<=m; ++i) scanf("%d",&cap[i]);
    int l=1,r=m,ans=m;
    while(l<=r) {
        int mid=(l+r)>>1;
        bool ok=0;
        for(int i=1;i+mid-1<=m;++i) if(solve(i,i+mid-1)) {
            ok=1;
            r=mid-1;
            ans=mid;
        }
        if(!ok) l=mid+1;
    }
    printf("%d\n",ans);
}

枚举 转化为可行性判定问题 网络流 poj3189的更多相关文章

  1. poj2699 转化为可行性判定问题+二分枚举+最大流

    The Maximum Number of Strong Kings Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2302 ...

  2. C#枚举转化示例大全,数字或字符串转枚举

    本文重点举例说明C#枚举的用法,数字转化为枚举.枚举转化为数字及其枚举数值的判断,以下是具体的示例: 先举两个简单的例子,然后再详细的举例说明: 字符串转换成枚举:DayOfWeek week=(Da ...

  3. 【算法】【网络流24题】巨坑待填(成功TJ,有时间再填)

    ------------------------------------------------------------------------------------ 17/24 --------- ...

  4. OC开发中运用到的枚举

      一  常见枚举的定义: typedef enum { LOGIN_SUCCESS, USER_NAME, USER_PASSWORD, OLD_LAT, OLD_LNG }FIELD_SAVED; ...

  5. MVC 枚举绑定 DropDownList

    /// <summary> /// 枚举转化下拉列表数据集 /// </summary> /// <param name="type">类型&l ...

  6. codevs2189数字三角形w——最优性转化

    题目:http://codevs.cn/problem/2189/ 通过增加一维,将最优性转化为可行性. 代码如下: #include<iostream> #include<cstd ...

  7. 将枚举转成SelectListItem

    代码如下: /// <summary> /// 将一个枚举转化成一个List<SelectListItem> /// </summary> /// <type ...

  8. spring boot 枚举使用的坑3

    上一篇说到spring boot 使用jackson在枚举enum序列化和反序列化的问题, 再来说说在JPA中实体entity使用枚举的问题. 还是这个枚举: @Getter @AllArgsCons ...

  9. 【UVA1660】Cable TV Network

    题目大意:给定一个 N 个点的无向图,求至少删去多少个点可以使得无向图不连通. 题解:学习到了点边转化思想. 根据网络流的知识可知,一个网络的最小割与网络的最大流相等.不过最小割是图的边集,而本题则是 ...

随机推荐

  1. 基于docker-compose部署LNMP

    一.配置环境 [root@docker ~]# systemctl stop firewalld[root@docker ~]# iptables -F[root@docker ~]# setenfo ...

  2. hdu_1050 Moving Tables 贪心

    Moving Tables Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  3. 如何迅速分析出系统CPU的瓶颈在哪里?

    内容出自极客时间专栏<Linux 性能优化实战> CPU 的性能指标那么多,CPU 性能分析工具一抓一大把,换成实际的工作场景,该观察什么指标.选择哪个性能工具呢? 不要担心,今天我就以多 ...

  4. 《Arduino实战》——3.4 小结

    本节书摘来异步社区<Arduino实战>一书中的第3章,第3.4节,作者:[美]Martin Evans ,Joshua Noble ,Jordan Hochenbaum,更多章节内容可以 ...

  5. TreeMap分析(中)

    通过上篇文章,大家已经能够理解红黑树的基础数据结构,那么这篇文章就来分析下,在红黑树中插入一个结点后,内部数据结构发生了哪些变化. TreeMap插入某个结点的源码分析 /** * 插入节点,并平衡红 ...

  6. VMware的安装与部署Linux系统

            首先我们需要准备好我们将会用到的东西:VMware12.RHEL7.0         网址我就不放了,大家自行百度哟. 一.安装VMware         我们需要安装VMware ...

  7. Codeforces Round #575 (Div. 3) 昨天的div3 补题

    Codeforces Round #575 (Div. 3) 这个div3打的太差了,心态都崩了. B. Odd Sum Segments B 题我就想了很久,这个题目我是找的奇数的个数,因为奇数想分 ...

  8. JS 究竟是先有鸡还是有蛋,Object与Function究竟谁出现的更早,Function算不算Function的实例等问题杂谈

    壹 ❀ 引 我在JS 疫情宅在家,学习不能停,七千字长文助你彻底弄懂原型与原型链一文中介绍了JavaScript原型与原型链,以及衍生的__proto__.constructor等一系列属性.在解答了 ...

  9. Spring官网阅读(四)BeanDefinition(上)

    前面几篇文章已经学习了官网中的1.2,1.3,1.4三小结,主要是容器,Bean的实例化及Bean之间的依赖关系等.这篇文章,我们继续官网的学习,主要是BeanDefinition的相关知识,这是Sp ...

  10. matlab 提示 Continuous sample time is not supported by discrete derivative 错误的解决办法

    Simulink仿真的时候,出行错误提示:Continuous sample time is not supported by discrete derivative 中文意思是:连续采样时间不支持离 ...