题目信息

  • 时间: 2019-06-30

  • 题目链接:Leetcode

  • tag: 大根堆 小根堆

  • 难易程度:中等

  • 题目描述:

    如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。

    设计一个支持以下两种操作的数据结构:

    • void addNum(int num) - 从数据流中添加一个整数到数据结构中。
    • double findMedian() - 返回目前所有元素的中位数。

示例1:

输入:
["MedianFinder","addNum","addNum","findMedian","addNum","findMedian"]
[[],[1],[2],[],[3],[]]
输出:[null,null,null,1.50000,null,2.00000]

示例2:

输入:
["MedianFinder","addNum","findMedian","addNum","findMedian"]
[[],[2],[],[3],[]]
输出:[null,null,2.00000,null,2.50000]

提示

最多会对 addNum、findMedia进行 50000 次调用。

解题思路

本题难点

给定一长度为 N 的无序数组,其中位数的计算方法:首先对数组执行排序(使用 O(NlogN) 时间),然后返回中间元素即可(使用 O(1) 时间)。如何更好的优化时间复杂度

具体思路

建立一个 大根堆 Left和小顶堆 Right ,各保存列表的一半元素,且规定:

  • Left 保存 较小 的一半,长度为 N/2( N 为偶数)或 N+1/2 (N 为奇数);
  • Right保存 较大 的一半,长度为 N/2( N 为偶数)或 N+1/2 (N 为奇数);

代码

class MedianFinder {
Queue<Integer> left;
Queue<Integer> right;
/** initialize your data structure here. */
public MedianFinder() {
//大根堆,堆顶元素最大,存较小的数
left = new PriorityQueue<>((x,y) -> (y - x));
//小根堆,堆顶元素最小,存较大的数
right = new PriorityQueue<>();
} //保证右边的小根堆数全部大于左边的大根堆的数
public void addNum(int num) {
//当前数据流中元素的个数为偶数时,即左半边大小和右半边大小相等时,
//新添加的元素要插入到右半边的小根堆中,添加后数据流元素个数为奇数,方便后面取中位数
//因为左半边的大根堆元素都要小于右半边,新插入的元素不一定比左半边元素原来的大
//利用左半边大根堆的特点,先将元素插入左半边,取出堆顶元素即为最大值再插入右半边的小根堆
if(left.size() == right.size()){
left.add(num);
right.add(left.poll());
}else{
right.add(num);
left.add(right.poll());
}
} public double findMedian() {
//当数据流中的个数为奇数时,中位数为右半边小根堆的最小值
//当数据流中的个数为偶数时,中位数位左半边大根堆的最大值和右半边小根堆的最小值的平均
return left.size() == right.size() ? (left.peek() + right.peek()) / 2.0 : right.peek();
}
} /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/

复杂度分析:

  • 时间复杂度 O(1) : 获取堆顶元素使用 O(1) 时间;
  • 空间复杂度 O(logN) : 堆的插入和弹出操作使用 O(logN) 时间。

每日一题 - 剑指 Offer 41. 数据流中的中位数的更多相关文章

  1. 剑指 Offer 41. 数据流中的中位数 + 堆 + 优先队列

    剑指 Offer 41. 数据流中的中位数 Offer_41 题目详情 题解分析 本题使用大根堆和小根堆来解决这个寻找中位数和插入中位数的问题. 其实本题最直接的方法是先对数组进行排序,然后取中位数. ...

  2. 【Java】 剑指offer(41) 数据流中的中位数

    本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中 ...

  3. [剑指offer] 41. 数据流中的中位数 (大小堆,优先队列)

    对于海量数据与数据流,用最大堆,最小堆来管理. class Solution { public: /* * 1.定义一个规则:保证左边(大顶堆)和右边(小顶堆)个数相差不大于1,且大顶堆的数值都小于等 ...

  4. 【剑指Offer】数据流中的中位数 解题报告(Python)

    [剑指Offer]数据流中的中位数 解题报告(Python) 标签(空格分隔): 剑指Offer 题目地址:https://www.nowcoder.com/ta/coding-interviews ...

  5. Go语言实现:【剑指offer】数据流中的中位数

    该题目来源于牛客网<剑指offer>专题. 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值.如果从数据流中读出偶数个数值,那么中位 ...

  6. 剑指offer:数据流中的中位数(小顶堆+大顶堆)

    1. 题目描述 /** 如何得到一个数据流中的中位数? 如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值. 如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两 ...

  7. 剑指Offer 63. 数据流中的中位数(其他)

    题目描述 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值.如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值.我们 ...

  8. 《剑指offer》-数据流中的中位数

    如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值.如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值. 最开始的思路 ...

  9. [剑指Offer] 63.数据流中的中位数

    题目描述 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值.如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值. c ...

随机推荐

  1. 第九届蓝桥杯JavaB组省赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.第几天 题目描述 2000年的1月1日,是那一年的第1天. 那么,2000年的5月4日,是那一年的第几天? 注意:需要提交的是一个整数 ...

  2. java实现数字的值返回

    以下的静态方法实现了:把串 s 中第一个出现的数字的值返回. 如果找不到数字,返回-1 例如: s = "abc24us43" 则返回 2 s = "82445adb5& ...

  3. java实现第六届蓝桥杯穿越雷区

    穿越雷区 题目描述 X星的坦克战车很奇怪,它必须交替地穿越正能量辐射区和负能量辐射区才能保持正常运转,否则将报废. 某坦克需要从A区到B区去(A,B区本身是安全区,没有正能量或负能量特征),怎样走才能 ...

  4. java实现第六届蓝桥杯格子中输出

    格子中输出 格子中输出 stringInGrid方法会在一个指定大小的格子中打印指定的字符串. 要求字符串在水平.垂直两个方向上都居中. 如果字符串太长,就截断. 如果不能恰好居中,可以稍稍偏左或者偏 ...

  5. java关键字tranisent用法详解

    作为java中的一个关键字,tranisent用的并不是很多,但是在某些关键场合,却又起着极为重要的作用,因此有必要对它进行一些必要的了解. 一.定义:声明不用序列化的成员域.(源自百度百科) 二.作 ...

  6. 百度poi搜索

    package baidumapsdk.demo.search; import android.os.Bundle; import android.support.v4.app.FragmentAct ...

  7. 安装fail2ban,防止ssh爆破及cc攻击

    背景:之前写过shell脚本防止服务器ssh爆破,但是对于服务器的cpu占用较多,看来下资料安装fail2ban 可以有效控制ssh爆破 1:fail2ban 安装(环境:centos6  宝塔) y ...

  8. PBFT共识算法

    拜占庭将军问题 我们已知的共识算法,Paxos.Raft解决的都是非拜占庭问题,也就是可以容忍节点故障,消息丢失.延时.乱序等,但节点不能有恶意节点.但如何在有恶意节点存在的情况下达成共识呢?BFT共 ...

  9. 面试了 6 轮 Google 中国 之后,还是挂了

    去年换工作的时候, 面试了一下 Google (这里说的是 Google 中国哈), 来了个 Google 面试六轮游, 结果是没通过.

  10. 如何知道使用的GatewayWorker版本号?

    打开GatewayWorker/Gateway.php, 在Gateway类内部VERSION常量标记了当前GatewayWorker的版本,例如下面GatewayWorker版本号为2.0.2. e ...