题目

As an emergency rescue team leader of a city, you are given a special map of your country. The map shows several scattered cities connected by some roads. Amount of rescue teams in each city and the length of each road between any pair of cities are marked on the map. When there is an emergency call to you from some other city, your job is to lead your men to the place as quickly as possible, and at the mean time, call up as many hands on the way as possible.

Input Specification

Each input file contains one test case. For each test case, the first line contains 4 positive integers: N (<=500) – the number of cities (and the cities are numbered from 0 to N-1), M – the number of roads, C1 and C2 – the cities that you are currently in and that you must save, respectively. The next line contains N integers, where the i-th integer is the number of rescue teams in the i-th city. Then M lines follow, each describes a road with three integers c1, c2 and L, which are the pair of cities connected by a road and the length of that road, respectively. It is guaranteed that there exists at least one path from C1 to C2.

Output Specification

For each test case, print in one line two numbers: the number of diferent shortest paths between C1 and C2, and the maximum amount of rescue teams you can possibly gather. All the numbers in a line must be separated by exactly one space, and there is no extra space allowed at the end of a line.

Sample Input

5 6 0 2

1 2 1 5 3

0 1 1

0 2 2

0 3 1

1 2 1

2 4 1

3 4 1

Sample Output

2 4

题意

国家紧急救援组织的小组分布在全国各个城市,地图标出了每个城市的救援小组数目和城市间的公路(稀疏城市),若出现紧急情况,需要从当前城市出发走最短路径(标准:耗时最短)到达需要救援的城市,同时,要求路上能尽量找到更多帮手协助救援

输入:顶点和边,领导组所在城市,各个城市急救小组的数目

输出:最短路径数目和能找到最多救援小组助手的数目

题目分析

已知网图点权-城市急救小组数目,边权-城市间路程耗时,求最短路径,要求该最短路径点权和最大

输入:顶点,点权,边,边权

输出:最短路径数目 所有最短路径中最大点权和

解题思路

1. 存储图

存储边和边权

1.1 邻接表(题目已知稀疏图,用邻接表比较合适)

1.2 邻接矩阵

存储点权

整型数组

2. 求最短路径

  • Dijkstra算法求最短路径,每次收集一个顶点到最短路径中时,若使得起点到其他顶点的最短路径更短,则更新dist[i],若等于dist[i],需比较其点权和,若点权和更大则更新dist[i];

注:本题不需要记录路径,int path[n]可以省略

Code

Code 01(邻接表)

#include <iostream>
#include <vector>
using namespace std;
const int maxn=510;
const int INF=9999999;
int n,c1,c2,vw[maxn]; //g边;vw点权
int dist[maxn],col[maxn];// col已经找到最小路径的顶点收集到col中
int w[maxn],num[maxn];
struct node{
int v;
int w;
};
vector<node> gw[maxn]; //gw边权;
/* dijkstra算法 求最短路径 */
int dmin() {
int min=INF,mini=0;
for(int i=0; i<n; i++) {
if(col[i]==1)continue; // 跳过被收集的点
if(min>dist[i]) {
min=dist[i]; //没有被收集的顶点中的最小者
mini=i;
}
}
return mini;
}
void dijkstra(int c) {
fill(dist,dist+n,INF);
dist[c]=0;
num[c]=1; //起点c1到其直连的顶点,都只有一条最短路径
w[c]=vw[c]; //起点c1的点权
for(int i=0; i<n; i++) {
int min=dmin(); //当前dist中最小值对应的顶点
if(min==c2) break; //已找到目标顶点
col[min]=1;
for(int j=0; j<gw[min].size(); j++) {
node e = gw[min][j];
if(col[e.v]==1)continue; //跳过 已被收集的顶点
if(dist[min]+e.w<dist[e.v]) {
dist[e.v]=dist[min]+e.w; //更新dist
w[e.v]=w[min]+vw[e.v]; // 更新c1到j的最短所有路径中的最大权重和
num[e.v]=num[min]; // 更新c1到j的最短路径数
} else if(dist[min]+e.w==dist[e.v]) {
if(w[min]+vw[e.v]>w[e.v])
w[e.v]=w[min]+vw[e.v];
num[e.v]+=num[min];
}
}
}
}
int main(int argc,char * argv[]) {
int m,a,b,r;
scanf("%d %d %d %d",&n,&m,&c1,&c2);
for(int i=0; i<n; i++)
scanf("%d",&vw[i]); //点权
for(int i=0; i<m; i++) {
scanf("%d %d %d",&a,&b,&r);
gw[a].push_back({b,r});
gw[b].push_back({a,r});
}
dijkstra(c1);
printf("%d %d",num[c2],w[c2]);
return 0;
}

Code 02

#include <iostream>
using namespace std;
const int maxn=510;
const int INF=9999999;
int n,c1,c2,gw[maxn][maxn],vw[maxn]; //g边;gw边权;vw点权
int dist[maxn],col[maxn];// col已经找到最小路径的顶点收集到col中
int w[maxn],num[maxn];
/* dijkstra算法 求最短路径 */
int dmin() {
int min=INF,mini=0;
for(int i=0; i<n; i++) {
if(col[i]==1)continue; // 跳过被收集的点
if(min>dist[i]) {
min=dist[i]; //没有被收集的顶点中的最小者
mini=i;
}
}
return mini;
}
void dijkstra(int c) {
fill(dist,dist+n,INF);
dist[c]=0;
num[c]=1; //起点c1到其直连的顶点,都只有一条最短路径
w[c]=vw[c]; //起点c1的点权
for(int i=0; i<n; i++) {
int min=dmin(); //当前dist中最小值对应的顶点
if(min==c2) break; //已找到目标顶点
col[min]=1;
for(int j=0; j<n; j++) {
if(gw[min][j]==0||col[j]==1)continue; //跳过 已被收集的顶点
if(dist[min]+gw[min][j]<dist[j]) {
dist[j]=dist[min]+gw[min][j]; //更新dist
w[j]=w[min]+vw[j]; // 更新c1到j的最短所有路径中的最大权重和
num[j]=num[min]; // 更新c1到j的最短路径数
} else if(dist[min]+gw[min][j]==dist[j]) {
if(w[min]+vw[j]>w[j])
w[j]=w[min]+vw[j];
num[j]+=num[min];
}
}
}
}
int main(int argc,char * argv[]) {
int m,a,b,r;
scanf("%d %d %d %d",&n,&m,&c1,&c2);
for(int i=0; i<n; i++)
scanf("%d",&vw[i]); //点权
for(int i=0; i<m; i++) {
scanf("%d %d %d",&a,&b,&r);
gw[a][b]=gw[b][a]=r; //边权
}
dijkstra(c1);
printf("%d %d",num[c2],w[c2]);
return 0;
}

PAT Advanced 1003 Emergency (25) [Dijkstra算法]的更多相关文章

  1. PAT 甲级 1003. Emergency (25)

    1003. Emergency (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue As an emerg ...

  2. PAT Advanced 1003 Emergency 详解

    题目与翻译 1003 Emergency 紧急情况 (25分) As an emergency rescue team leader of a city, you are given a specia ...

  3. PAT 甲级1003 Emergency (25)(25 分)(Dikjstra,也可以自己到自己!)

    As an emergency rescue team leader of a city, you are given a special map of your country. The map s ...

  4. PAT (Advanced level) 1003. Emergency (25) Dijkstra

    As an emergency rescue team leader of a city, you are given a special map of your country. The map s ...

  5. PAT Advanced 1070 Mooncake (25) [贪⼼算法]

    题目 Mooncake is a Chinese bakery product traditionally eaten during the Mid-Autumn Festival. Many typ ...

  6. PAT 解题报告 1003. Emergency (25)

    1003. Emergency (25) As an emergency rescue team leader of a city, you are given a special map of yo ...

  7. PAT 1003. Emergency (25)

    1003. Emergency (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue As an emerg ...

  8. PAT 1003. Emergency (25) dij+增加点权数组和最短路径个数数组

    1003. Emergency (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue As an emerg ...

  9. 1003 Emergency (25)(25 point(s))

    problem 1003 Emergency (25)(25 point(s)) As an emergency rescue team leader of a city, you are given ...

随机推荐

  1. fuseki远程访问方法

    ./fuseki-server启动服务后,我们的服务只能是localhost访问,无法被其他人访问,那么 要怎么修改呢.很简单,把apche-jena-fuseki-3.10.0/run 下面的shi ...

  2. iOS 枚举ENUM和OPTIONS的区别

  3. Linux-nftables

    Linux-nftables https://netfilter.org/ https://netfilter.org/projects/iptables/index.html https://net ...

  4. package报错

    java类的第一行package 包路径 package报错 jdk版本不一致 或者jar包冲突

  5. Day4 - M - Roads in Berland CodeForces - 25C

    There are n cities numbered from 1 to n in Berland. Some of them are connected by two-way roads. Eac ...

  6. Python 使用 requests 模块发送请求的使用及封装

    一.requests 模块基本使用 1.准备接口的URL.请求参数.请求头 # 1. 构造注册.登录.充值请求的url register_url = "注册url" login_u ...

  7. 深度学习之常用linux命令总结

    深度学习中常用linux命令总结 1.创建文件夹 mkdir 文件名2.删除文件 rm -d 目录名 #删除一个空目录 rmdir 目录名 #删除一个空目录 rm -r 目录名 #删除一个非空目录 r ...

  8. 安卓Recycleview简单的网格布局-初学者的关键点

    导包 def supportVersion = '28.0.0' 定义常量我的sdk版本为28 implementation "com.android.support:recyclervie ...

  9. poj 1318 Word Amalgamation

    Word Amalgamation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9968   Accepted: 4774 ...

  10. hihocoder 1241:Best Route in a Grid

    #1241 : Best Route in a Grid 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定一个N行N列的非负整数方阵,从左上角(1,1)出发,只能向下 ...