矩阵快速幂-QuickPow
矩阵快速幂引入:
1.整数快速幂:
为了引出矩阵的快速幂,以及说明快速幂算法的好处,我们可以先求整数的幂。
如果现在要算X^8:则 XXXXXXXX 按照寻常思路,一个一个往上面乘,则乘法运算进行7次。
(XX)(XX)(XX)(XX)
这种求法,先进行乘法得X^2,然后对X^2再执行三次乘法,这样去计算,则乘法运算执行4次。已经比七次要少。所以为了快速算的整数幂,就会考虑这种结合的思想。
现在要考虑应该怎么分让计算比较快。接下来计算整数快速幂。例如:X^19次方。
19的二进制为:1 0 0 1 1 。
由(X^m)(X^n) = X^(m+n)
则X^19 = (X^16)(X^2)*(X^1)
那么怎么来求解快速幂呢。请看下列代码:
求解X^N的值。
///整数快速幂,计算x^N
int QuickPow(int x,int N)//传入底数x和指数N
{
int res = x;
int ans = ;
while(N)
{
if(N&)//N是奇数
{
ans = ans * res;
}
res = res*res;
N = N>>;//N向右移位
}
return ans;
}
那么让我们来看看下面这段代码到底对不对:
对于X^19来说:
19的二进制为:1 0 0 1 1
初始:
那么让我们来看看下面这段代码到底对不对:
对于X^19来说:
19的二进制为:1 0 0 1 1
初始:
ans = ; res = x;
则10011最后一位是1,所以是奇数。
ans = res*ans = x;
res = res*res = x^;
然后右移一位,1 0 0 1
则1001最后一位是1,所以是奇数
ans = res*ans = x*(x^) = x^ res = res*res = x^*x^ = x^
然后右移一位,1 0 0
则最后一位是0,所以当前的数为偶数。
res = res*res = x^*x^ = x^
然后右移一位,1 0
最后一位是0,当前数是偶数。
res = res*res =x^*x^= x^
然后右移一位,1
最后一位是1,当前数是奇数
ans = ans*res = (x^)*(x^) = x^ res = res*res = x^
2.矩阵快速幂算法篇
算法思想与整数快速幂算法类似:
struct Mat
{
LL m[][];
};//存储结构体
Mat a,e; //a是输入的矩阵,e是输出的矩阵
Mat Mul(Mat x,Mat y)
{
Mat c;
for(int i=;i<=n;++i){
for(int j=;j<=n;++j){
c.m[i][j] = ;
}
}
for(int i=;i<=n;++i){
for(int j=;j<=n;++j){
for(int k=;k<=n;++k){
c.m[i][j] = c.m[i][j]%mod + x.m[i][k]*y.m[k][j]%mod;
}
}
}
return c;
}
Mat pow(Mat x,LL y)//矩阵快速幂
{
Mat ans = e;
while(y){
if(y&) ans = Mul(ans,x);
x = Mul(x,x);
y>>=;
}
return ans;
矩阵快速幂-QuickPow的更多相关文章
- 2015 多校联赛 ——HDU5302(矩阵快速幂)
The Goddess Of The Moon Sample Input 2 10 50 12 1213 1212 1313231 12312413 12312 4123 1231 3 131 5 5 ...
- HDU 1575(裸矩阵快速幂)
emmmmm..就是矩阵快速幂,直接附代码: #include <cstdio> using namespace std; ; ; struct Matrix { int m[maxn][ ...
- POJ 3070(求斐波那契数 矩阵快速幂)
题意就是求第 n 个斐波那契数. 由于时间和内存限制,显然不能直接暴力解或者打表,想到用矩阵快速幂的做法. 代码如下: #include <cstdio> using namespace ...
- ZZNU 2182 矩阵dp (矩阵快速幂+递推式 || 杜教BM)
题目链接:http://47.93.249.116/problem.php?id=2182 题目描述 河神喜欢吃零食,有三种最喜欢的零食,鱼干,猪肉脯,巧克力.他每小时会选择一种吃一包. 不幸的是,医 ...
- ZOJ - 2853 Evolution 线性变换变成矩阵快速幂
题意:给你N个数,1~N分别为num[i], 以及T个 (i,j,P) 对于每组(i,j,P),让你将 num[i] 减去 P*num[i] 再把 P*num[i] 加到 num[j] 上.T个 ...
- 2013长春网赛1009 hdu 4767 Bell(矩阵快速幂+中国剩余定理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4767 题意:求集合{1, 2, 3, ..., n}有多少种划分情况bell[n],最后结果bell[ ...
- hdu 4686 Arc of Dream(矩阵快速幂)
链接:http://acm.hdu.edu.cn/showproblem.php?pid=4686 题意: 其中a0 = A0ai = ai-1*AX+AYb0 = B0bi = bi-1*BX+BY ...
- 2016"百度之星" - 初赛(Astar Round2A) A.All X 矩阵快速幂
All X Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Problem Des ...
- 2017中国大学生程序设计竞赛 - 女生专场 Happy Necklace(递推+矩阵快速幂)
Happy Necklace Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) ...
随机推荐
- CentOS7下MySQL5.7的安装-RPM方式
Installing MySQL on Linux Using RPM Packages 下载安装包 mysql下载地址:https://dev.mysql.com/downloads/mysql/ ...
- manacher算法 详解+模板
manacher算法可以解决字符串的回文子串长度问题. 个人感觉szy学长讲的非常好,讲过之后基本上就理解了. 那就讲一下个人的理解.(参考了szy学长的ppt) 如果一个回文子串的长度是偶数,对称轴 ...
- HBase完全分布式集群搭建
HBase完全分布式集群搭建 hbase和hadoop一样也分为单机版,伪分布式版和完全分布式集群版,此文介绍如何搭建完全分布式集群环境搭建.hbase依赖于hadoop环境,搭建habase之前首先 ...
- 将js进行到底:node学习5
HTTP开发之Connect工具集--中间件 继学习node.js的TCP API和HTTP API之后,node.js web开发进入了正轨,但这就好像Java的servlet一样,我们不可能使用最 ...
- 原生 XMLHttpRequest
一.什么是XMLHttpRequest? XHR英文全名XmlHttpRequest,中文可以解释为可扩展超文本传输请求.Xml可扩展标记语言,Http超文本传输协议,Request请求.XMLHtt ...
- getshell技巧-phpMyAdmin的利用
生活就是泥沙俱下,鲜花和荆棘并存.--毕淑敏 1.明确目标2.信息收集3.漏洞挖掘和利用 信息收集 明确路径 利用目录扫描工具,对目标网站进行扫描,获取网站目录.常用工具有Kali中的DirBuste ...
- 【转载】Oracle Spatial中SDO_Geometry详细说明
转载只供个人学习参考,查看请前往原出处:http://www.cnblogs.com/upDOoGIS/archive/2009/05/20/1469871.html 相关微博:oracle 创建SD ...
- ASP制作建议留言板
<html> <head> <meta http-equiv="Content-Type" content="text/html;cha ...
- USB小白学习之路(2)端点IN/OUT互换
端点2(out)和端点6(in)的out_in互换 注:这里的out和in都是以host为标准说的,out是host的out,在设备(Cy7c68013)这里其实是输入端口:in是host的in,在设 ...
- jstack的使用
一.概述 有些时候我们需要查看下jvm中的线程执行情况,比如,发现服务器的CPU的负载突然增高了.出现了死锁.死循环等,我们该如何分析呢? 由于程序是正常运行的,没有任何的输出,从日志方面也看不出什么 ...