矩阵快速幂引入:


  1.整数快速幂:

  为了引出矩阵的快速幂,以及说明快速幂算法的好处,我们可以先求整数的幂。
如果现在要算X^8:则 XXXXXXXX 按照寻常思路,一个一个往上面乘,则乘法运算进行7次。
(X
X)(XX)(XX)(XX)
这种求法,先进行乘法得X^2,然后对X^2再执行三次乘法,这样去计算,则乘法运算执行4次。已经比七次要少。所以为了快速算的整数幂,就会考虑这种结合的思想。
现在要考虑应该怎么分让计算比较快。接下来计算整数快速幂。例如:X^19次方。
19的二进制为:1 0 0 1 1 。
由(X^m)(X^n) = X^(m+n)
则X^19 = (X^16)
(X^2)*(X^1)
那么怎么来求解快速幂呢。请看下列代码:
求解X^N的值。
///整数快速幂,计算x^N

 int QuickPow(int x,int N)//传入底数x和指数N
{
int res = x;
int ans = ;
while(N)
{
if(N&)//N是奇数
{
ans = ans * res;
}
res = res*res;
N = N>>;//N向右移位
}
return ans;
    }

那么让我们来看看下面这段代码到底对不对:
对于X^19来说:
19的二进制为:1 0 0 1 1
初始:

那么让我们来看看下面这段代码到底对不对:
对于X^19来说:
19的二进制为:1 0 0 1 1
初始:

ans = ; res = x;

则10011最后一位是1,所以是奇数。

ans = res*ans = x;
res = res*res = x^;

然后右移一位,1 0 0 1
则1001最后一位是1,所以是奇数

ans = res*ans = x*(x^) = x^

res = res*res = x^*x^ = x^

然后右移一位,1 0 0

则最后一位是0,所以当前的数为偶数。

 res = res*res = x^*x^ = x^

然后右移一位,1 0
最后一位是0,当前数是偶数。

res = res*res =x^*x^= x^

然后右移一位,1
最后一位是1,当前数是奇数

ans = ans*res = (x^)*(x^) = x^

res = res*res = x^

2.矩阵快速幂算法篇

算法思想与整数快速幂算法类似:

 struct Mat
{
LL m[][];
};//存储结构体
Mat a,e; //a是输入的矩阵,e是输出的矩阵
Mat Mul(Mat x,Mat y)
{
Mat c;
for(int i=;i<=n;++i){
for(int j=;j<=n;++j){
c.m[i][j] = ;
}
}
for(int i=;i<=n;++i){
for(int j=;j<=n;++j){
for(int k=;k<=n;++k){
c.m[i][j] = c.m[i][j]%mod + x.m[i][k]*y.m[k][j]%mod;
}
}
}
return c;
}
Mat pow(Mat x,LL y)//矩阵快速幂
{
Mat ans = e;
while(y){
if(y&) ans = Mul(ans,x);
x = Mul(x,x);
y>>=;
}
return ans;

矩阵快速幂-QuickPow的更多相关文章

  1. 2015 多校联赛 ——HDU5302(矩阵快速幂)

    The Goddess Of The Moon Sample Input 2 10 50 12 1213 1212 1313231 12312413 12312 4123 1231 3 131 5 5 ...

  2. HDU 1575(裸矩阵快速幂)

    emmmmm..就是矩阵快速幂,直接附代码: #include <cstdio> using namespace std; ; ; struct Matrix { int m[maxn][ ...

  3. POJ 3070(求斐波那契数 矩阵快速幂)

    题意就是求第 n 个斐波那契数. 由于时间和内存限制,显然不能直接暴力解或者打表,想到用矩阵快速幂的做法. 代码如下: #include <cstdio> using namespace ...

  4. ZZNU 2182 矩阵dp (矩阵快速幂+递推式 || 杜教BM)

    题目链接:http://47.93.249.116/problem.php?id=2182 题目描述 河神喜欢吃零食,有三种最喜欢的零食,鱼干,猪肉脯,巧克力.他每小时会选择一种吃一包. 不幸的是,医 ...

  5. ZOJ - 2853 Evolution 线性变换变成矩阵快速幂

    题意:给你N个数,1~N分别为num[i],  以及T个 (i,j,P) 对于每组(i,j,P),让你将  num[i] 减去 P*num[i]  再把 P*num[i] 加到 num[j] 上.T个 ...

  6. 2013长春网赛1009 hdu 4767 Bell(矩阵快速幂+中国剩余定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4767 题意:求集合{1, 2, 3, ..., n}有多少种划分情况bell[n],最后结果bell[ ...

  7. hdu 4686 Arc of Dream(矩阵快速幂)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=4686 题意: 其中a0 = A0ai = ai-1*AX+AYb0 = B0bi = bi-1*BX+BY ...

  8. 2016"百度之星" - 初赛(Astar Round2A) A.All X 矩阵快速幂

    All X  Time Limit: 2000/1000 MS (Java/Others)  Memory Limit: 65536/65536 K (Java/Others) Problem Des ...

  9. 2017中国大学生程序设计竞赛 - 女生专场 Happy Necklace(递推+矩阵快速幂)

    Happy Necklace Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) ...

随机推荐

  1. CentOS7下MySQL5.7的安装-RPM方式

    Installing MySQL on Linux Using RPM Packages 下载安装包 mysql下载地址:https://dev.mysql.com/downloads/mysql/ ...

  2. manacher算法 详解+模板

    manacher算法可以解决字符串的回文子串长度问题. 个人感觉szy学长讲的非常好,讲过之后基本上就理解了. 那就讲一下个人的理解.(参考了szy学长的ppt) 如果一个回文子串的长度是偶数,对称轴 ...

  3. HBase完全分布式集群搭建

    HBase完全分布式集群搭建 hbase和hadoop一样也分为单机版,伪分布式版和完全分布式集群版,此文介绍如何搭建完全分布式集群环境搭建.hbase依赖于hadoop环境,搭建habase之前首先 ...

  4. 将js进行到底:node学习5

    HTTP开发之Connect工具集--中间件 继学习node.js的TCP API和HTTP API之后,node.js web开发进入了正轨,但这就好像Java的servlet一样,我们不可能使用最 ...

  5. 原生 XMLHttpRequest

    一.什么是XMLHttpRequest? XHR英文全名XmlHttpRequest,中文可以解释为可扩展超文本传输请求.Xml可扩展标记语言,Http超文本传输协议,Request请求.XMLHtt ...

  6. getshell技巧-phpMyAdmin的利用

    生活就是泥沙俱下,鲜花和荆棘并存.--毕淑敏 1.明确目标2.信息收集3.漏洞挖掘和利用 信息收集 明确路径 利用目录扫描工具,对目标网站进行扫描,获取网站目录.常用工具有Kali中的DirBuste ...

  7. 【转载】Oracle Spatial中SDO_Geometry详细说明

    转载只供个人学习参考,查看请前往原出处:http://www.cnblogs.com/upDOoGIS/archive/2009/05/20/1469871.html 相关微博:oracle 创建SD ...

  8. ASP制作建议留言板

    <html>  <head>  <meta http-equiv="Content-Type" content="text/html;cha ...

  9. USB小白学习之路(2)端点IN/OUT互换

    端点2(out)和端点6(in)的out_in互换 注:这里的out和in都是以host为标准说的,out是host的out,在设备(Cy7c68013)这里其实是输入端口:in是host的in,在设 ...

  10. jstack的使用

    一.概述 有些时候我们需要查看下jvm中的线程执行情况,比如,发现服务器的CPU的负载突然增高了.出现了死锁.死循环等,我们该如何分析呢? 由于程序是正常运行的,没有任何的输出,从日志方面也看不出什么 ...