借助倍增和动态规划可以实现O(1)的时间复杂度的查询

预处理:

①区间DP   转移方程  f[i][j] = min(MAX同理)(f[i][j - 1],f[i + ][j - 1])  f[i][j]表示从i位置开始的后2^j个数中的最大值

用f[i][j]表示从j到j+2^i-1的最小值(长度显然为2^i)。

任意一段的最小值显然等于min(前半段最小值,后半段最小值)。

那么f[i][j]如何用其他状态来继承呢?

j到j+2^i-1的长度为2^i,那么一半的长度就等于2^(i-1)。

那么前半段的状态表示为f[i-1][j]。

后半段的长度也为2^(i-1),起始位置为j+2^(i-1)。

那么后半段的状态表示为f[i-1][j+2^(i-1)]。

②不过区间在增加时,每次并不是增加一个长度,而是基于倍增思想,用二进制右移,每次增加2^i个长度 ,最多增加logn次

这样预处理了所有2的幂次的小区间的最值

关于倍增法链接

查询:

③对于每个区间,分成两段长度为的区间,再取个最值(这里的两个区间是可以有交集的,因为重复区间并不影响最值)

比如3,4,6,5,3一种分成3,4,6和6,5,3,另一种分成3,4,6和5,3,最大值都是6,没影响。

首先明确 2^log(a)>a/2

这个很简单,因为log(a)表示小于等于a的2的最大几次方。比如说log(4)=2,log(5)=2,log(6)=2,log(7)=2,log(8)=3,log(9)=3…….

那么我们要查询x到y的最小值。设len=y-x+1,t=log(len),根据上面的定理:2^t>len/2,从位置上来说,x+2^t越过了x到y的中间!

因为位置过了一半,所以x到y的最小值可以表示为min(从x往后2^t的最小值,从y往前2^t的最小值),前面的状态表示为f[t][x]

设后面(从y往前2^t的最小值)的初始位置是k,那么k+2^t-1=y,所以k=y-2^t+1,所以后面的状态表示为f[t][y-2^t+1]

所以x到y的最小值表示为f(f[t][x],f[t][y-2^t+1]),所以查询时间复杂度是O(1)

④所以O(nlogn)预处理,O(1)查询最值  但不支持修改

预处理时间复杂度O(nlogn),查询时间O(1)。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
using namespace std;
int map[1000005][20];
int N,K;
void work()
{
int i,j;
for(j=1;1<<j<=N;j++)
for(i=1;i+(1<<j)-1<=N;i++)//i+(1<<j)-1<=n是为了保证区间左端点不超出总数n
map[i][j]=min(map[i][j-1],map[i+(1<<j-1)][j-1]);//实质是动态规划
}
int question(int z,int y)
{
int x=int (log(y-z+1)/log(2));//注意y-z要加一才为区间长度
return min(map[z][x],map[y-(1<<x)+1][x]);//分别以左右两个端点为基础,向区间内跳1<<x的最
//大值;
}
int main()
{ scanf("%d",&N);//输入数据总数
scanf("%d",&K);//输入询问次数k
for(int i=1;i<=N;i++)
scanf("%d",&map[i][0]);//数据输入加初始化,即从i开始向右走2的0次方的区间中的最大值,(注//意i到i的长度为一)。
work();//预处理
for(int i=1;i<=K;i++) { int a,b;
scanf("%d%d",&a,&b);
printf("%d ",question(a,b));//输出结果
}
return 0;
}
 

疯子的算法总结14--ST算法(区间最值)的更多相关文章

  1. hdu3486 ST表区间最值+二分

    还是挺简单的,但是区间处理的时候要注意一下 #include<iostream> #include<cstring> #include<cstdio> #inclu ...

  2. ST算法

    作用:ST算法是用来求解给定区间RMQ的最值,本文以最小值为例 举例: 给出一数组A[0~5] = {5,4,6,10,1,12},则区间[2,5]之间的最值为1. 方法:ST算法分成两部分:离线预处 ...

  3. [CF 191C]Fools and Roads[LCA Tarjan算法][LCA 与 RMQ问题的转化][LCA ST算法]

    参考: 1. 郭华阳 - 算法合集之<RMQ与LCA问题>. 讲得很清楚! 2. http://www.cnblogs.com/lazycal/archive/2012/08/11/263 ...

  4. RMQ问题——ST算法

    比赛当中,常会出现RMQ问题,即求区间最大(小)值.我们该怎样解决呢? 主要方法有线段树.ST.树状数组.splay. 例题 题目描述 2008年9月25日21点10分,酒泉卫星发射中心指控大厅里,随 ...

  5. [总结]RMQ问题&ST算法

    目录 一.ST算法 二.ST算法の具体实现 1. 初始化 2. 求出ST表 3. 询问 三.例题 例1:P3865 [模板]ST表 例2:P2880 [USACO07JAN]平衡的阵容Balanced ...

  6. RMQ求区间最值 nlog(n)

    转载于:http://blog.csdn.net/xuzengqiang/article/details/7350465 RMQ算法全称为(Range Minimum/Maximum Query)意思 ...

  7. RAM区间最值

    RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j里的最小(大)值,也就 ...

  8. 51NOD1174 区间最大数 && RMQ问题(ST算法)

    RMQ问题(区间最值问题Range Minimum/Maximum Query) ST算法 RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度 ...

  9. 求解区间最值 - RMQ - ST 算法介绍

    解析 ST 算法是 RMQ(Range Minimum/Maximum Query)中一个很经典的算法,它天生用来求得一个区间的最值,但却不能维护最值,也就是说,过程中不能改变区间中的某个元素的值.O ...

  10. HDU 5289 Assignment (ST算法区间最值+二分)

    题目链接:pid=5289">http://acm.hdu.edu.cn/showproblem.php?pid=5289 题面: Assignment Time Limit: 400 ...

随机推荐

  1. docker 服务器安装harbor

    一.Harbor是什么? 二.环境搭建 2.1在linux centos搭建服务 2.2docker安装 yum安装 yum install docker 卸载 :pip uninstall dock ...

  2. Linux kernel min/max宏

    #define min(x,y) ({ \ typeof(x) _x = (x); \ typeof(y) _y = (y); \ (void) (&_x == &_y); \ _x ...

  3. Spring Data REST不完全指南(一)

    简介 Spring Data REST是Spring Data项目的一部分,可轻松在Spring Data存储库上构建超媒体驱动的REST Web服务. Spring Data REST 构建在 Sp ...

  4. POJ 跳蚤

    Z城市居住着很多只跳蚤.在Z城市周六生活频道有一个娱乐节目.一只跳蚤将被请上一个高空钢丝的正中央.钢丝很长,可以看作是无限长.节目主持人会给该跳蚤发一张卡片.卡片上写有N+1个自然数.其中最后一个是M ...

  5. js的localStorage基础认识

    新建a.html文件: <!DOCTYPE html> <html> <body> <div id="result"></di ...

  6. 树莓派3b在rt-thread上移植LittlevGL

    树莓派3b在rt-thread上移植LittlevGL 目录 树莓派3b在rt-thread上移植LittlevGL 1.本文概述 2.资源准备 3.上手体验 4.rt-thread与lvgl进行无缝 ...

  7. 大数据并行计算框架Spark

    Spark2.1. http://dblab.xmu.edu.cn/blog/1689-2/ 0+入门:Spark的安装和使用(Python版) Spark2.1.0+入门:第一个Spark应用程序: ...

  8. 【AspNetCore源码】设计模式 - 提供者模式

    AspNetCore源代码发现日志模块的设计模式(提供者模式),特此记录 学习设计模式的好处是,我们可以容易扩展它达到我们要求,除了要知道如何扩展它,还应该在其他地方应用它 类图 & 分析 角 ...

  9. JS面向对象编程之封装

    来源:https://segmentfault.com/a/1190000015843072 我们所熟知的面向对象语言如 C++.Java 都有类的的概念,类是实例的类型模板,比如Student表示学 ...

  10. thinkphp--多个id查询

    $feedback_list = $feedback -> where( array("member_id"=>array("in", " ...