并行计算基础(1)(GPU架构介绍)
一、常用术语
Task:任务。可以完整得到结果的一个程序,一个程序段或若干个程序段。例如搬砖。
Parallel Task:并行任务。可以并行计算的任务。多个人搬砖。
Serial Execution:串行执行。一个人搬砖。
Parallel Execution:并行执行。多个人一起搬砖。
Shared Memory:共享存储。
Distributed Memory:分布式存储。砖放在不同的地方。
Communications:通信。几个人搬砖时互相安排下一次搬几个砖。
Synchronization:同步。若干个人一起拿砖、一起放砖,动作同步。
Granularity:粒度。任务划分时,任务的大小。
Observed Speedup:加速比。对比一个标志物,并行系统所能获得的性能提升。
Parallel Overhead:并行开销。
Scalability:可扩展性。并行数扩展后,性能是否线性提升,主要要注意并行通信等的开销问题。
二、Amdahl's Law并行加速比
如果有N个处理器并行处理:
$$\begin{aligned} speedup &=\frac{1}{\frac{P}{N}+S} \end{aligned}$$
并行化的可扩展性存在极限,主要取决于不能并行的部分(串行部分):
三、GPU
FLOPS:Floating-point Operations Per Second ,每秒浮点运算操作数量
GFLOPS:One billion FlOPs,每秒十亿次浮点运算
TFLOPS:1000 GFLOPs,每秒万亿次浮点运算
在CPU-style核心中:
左边是主要进行计算的部分(干活),右边主要是为了让任务完成得更快而产生了一系列管理部件(占据了芯片的很大部分成本和面积)。
GPU结构的进化过程:
1.在GPU核心中,为其进行了瘦身,大量缩减了右边的管理机构,得到瘦身后的核,并使用多个核:
将这样的理念更深入的实现,就可以得到可以大量并行化的核:
这一系列并行核芯可以同时执行多个程序片元(即程序段),这些程序片元需要共享相同的指令流。因为如果不是相同的指令流,则需要很复杂的控制机构,那就变成了CPU style了。
(上述概念相当于增加了干活的人)
2.我们可以增加核的数量,那我们也可以加宽核(增加每个核的ALU数):
在这个核中,我们就可以进行向量的运算(多个数据组成向量vector)。
(上述概念相当于增加了一个人可以同时处理的数据个数,一个人8把切西瓜的刀,一次切8个西瓜)
3.如何处理指令流中有分支的情况:
例如当x>0时,执行操作A,当x<0时,执行操作B:
如图,8个ALU执行同一个指令流,但是其中有3个的数据大于0,执行A操作。而剩下5个数据小于0,执行B操作。此时,A和B操作只能错开来执行,不能同时执行。那么这就会导致ALU存在一个性能的最坏情况,白白浪费。
4.停滞stalls的问题:
当核心要处理的数据还没准备好时(处理很快,数据访问速度慢),或者对其他任务的结果有依赖。则需要停滞下来进行等待,这样很浪费性能。
我们可以通过使用大量的独立片元相互切换来使核心一直有事情做。
如上图所示,当任务1没准备好时,就去做任务2,2没准备好就做任务3......
在切换这些任务的过程中,需要保存每次运行的上下文信息,所以每个核心都有一个叫上下文存储池的存储空间。
将存储空间分块:
空间划分数量多,则可以切换的任务数多,但每个任务所能存放的上下文就比较小。反之任务数少,每个任务存放上下文多。
(上下文切换可以是软件管理的也可以是硬件管理的,还可以是两者结合的,例如GPU主要是硬件管理的,而且上下文非常多)
5.FLOPS计算
如上图所示:
1). 16个核心cores
2). 每个核心8个计算单元ALUs,一共128个ALUs,即16核心 X 8个ALUs = 128
3). 16核就可以承载16路指令流
4). 每个核可以存储4个任务的上下文,则可以同时跑64路的指令流,即16核 X 4任务 = 64
5). 总的可以承载512个程序片元,即64个指令流 X 每核8个ALUs = 512
6).FLOPS 为256GFLOPS, 16核 X 8 ALUs X 1GHz X 2 = 256GFLOPS(为什么要乘以2)
6.GPU设计总结(工人阶级的血汗史)
1).使用瘦身的核,来增加并行处理数
2).每个核中塞N个ALUs
3).让其不停的干活,即任务切换
7.物理GPU的设计
NVIDIA GeForce GTX 480采用Fermi架构:
有480个SP(stream processors)流处理器,实际上就是ALUs。取名也叫CUDA core。
15个核心,这个核心叫SM,即流多处理器,Stream multiprocessor。
每个SM有两组,每组16个CUDA core,即32个ALUs。15 X 32 = 480。
GTX680:
每个SM中有192个CUDA cores(图中浅绿色部分)。SM更强,改名为SMX。
192个CUDA,但是每32个CUDA core作为一组,则需要6个组长,但实际上只有4个组长,这就需要动态的调度(具体调度方法不做了解)。
整个GTX680芯片由8个SMX组成。
8.显存
GPU芯片的很大部分面积都是CUDA core,而显存放在芯片的外面。
最重要的是访存带宽,因为CPU的运算是很快的,但是读写存储中的数据可能是很慢的。虽然目前GPU中的访存带宽做了专门的设计和优化,但对于GPU的运算能力来说还是不太够。但就算这样也比CPU快很多倍。
GPU中缓存的大小相对CPU更小,因为GPU的访存带宽比CPU大,所以处理好带宽的利用就好了。
减少带宽需求:
1).尽量减少数据的访问。
2).小数据打包访存,减少访存的次数。
9.高效的GPU任务具备的条件
1).具有成千上万的独立工作,尽量利用大量的ALU单元,大量的片元切换来掩藏延迟。
2).可以共享指令流,使用与SIMD处理。
3).最好是计算密集的任务,通信和计算开销比例合适,不要受制于访存带宽。
并行计算基础(1)(GPU架构介绍)的更多相关文章
- 【并行计算-CUDA开发】CUDA编程——GPU架构,由sp,sm,thread,block,grid,warp说起
掌握部分硬件知识,有助于程序员编写更好的CUDA程序,提升CUDA程序性能,本文目的是理清sp,sm,thread,block,grid,warp之间的关系.由于作者能力有限,难免有疏漏,恳请读者批评 ...
- 剖析虚幻渲染体系(12)- 移动端专题Part 2(GPU架构和机制)
目录 12.4 移动渲染技术要点 12.4.1 Tile-based (Deferred) Rendering 12.4.2 Hierarchical Tiling 12.4.3 Early-Z 12 ...
- 大型网站技术架构介绍--squid
一.大型网站技术架构介绍 1.pv高 ip高 并发量 2.大型网站架构重点 1. 高性能:响应时间,TPS,系统性能计数器.缓存,消息队列等. 高可用性High Availabilit ...
- 老李分享: 并行计算基础&编程模型与工具 1
老李分享: 并行计算基础&编程模型与工具 在当前计算机应用中,对高速并行计算的需求是广泛的,归纳起来,主要有三种类型的应用需求: 计算密集(Computer-Intensive)型应用,如 ...
- Mysql双主互备+keeplived高可用架构介绍
一.Mysql双主互备+keeplived高可用架构介绍 Mysql主从复制架构可以在很大程度保证Mysql的高可用,在一主多从的架构中还可以利用读写分离将读操作分配到从库中,减轻主库压力.但是在这种 ...
- python网络编程之C/S架构介绍
标签(空格分隔): c/s架构介绍 什么是C/S架构 C指的是client(客户端软件),S指的是Server(服务端软件),后续我们可以试着写个c/s软件实现服务器软件与客户端软件基于网络通信: 计 ...
- Kafka设计解析(一)Kafka背景及架构介绍
转载自 技术世界,原文链接 Kafka设计解析(一)- Kafka背景及架构介绍 本文介绍了Kafka的创建背景,设计目标,使用消息系统的优势以及目前流行的消息系统对比.并介绍了Kafka的架构,Pr ...
- Kafka剖析:Kafka背景及架构介绍
<Kafka剖析:Kafka背景及架构介绍> <Kafka设计解析:Kafka High Availability(上)> <Kafka设计解析:Kafka High A ...
- jhipser微服务架构介绍
内容提要 本文涉及以下内容: 微服务架构介绍 spring cloud介绍 jhipster架构介绍 微服务架构介绍 微服务概念 微服务和SOA很相似,都是按照业务功能把系统拆分成一个一个的服务.比如 ...
随机推荐
- Java中对比单继承与多继承的优劣,以及java的解决方案
继承是一种面相对象的基本特征之一,但在具体语言的语法设计中有两种方式:单继承和多继承. 所谓多继承是指一个子类可以拥有多个父类:单继承则是一个子类只拥有一个父类. 单继承与多继承的优劣: 多继承优点在 ...
- HDU 1260 Tickets (动态规划)
Tickets Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- @Transient注解的使用(不被序列化和作为临时变量存储)
转自:https://blog.csdn.net/sinat_29581293/article/details/51810805 java 的transient关键字的作用是需要实现Serilizab ...
- git 添加本地项目到远程仓库 记录一下命令
1.初始化 git init 2.关联远程仓库 git remote add origin 你的仓库地址 3.加入到本地仓库 git add * 4.推送(强推).如果不想强推 ,可以先执行下 git ...
- Python环境配置问题及解决办法
Windows下用pip安装包时出现"error: Microsoft Visual C++ 9.0 is required"错误 error: Microsoft Visual ...
- Python基础字符串前加u,r,b,f含义
1.字符串前加 u 例:u"我是含有中文字符组成的字符串." 作用: 后面字符串以 Unicode 格式 进行编码,一般用在中文字符串前面,防止因为源码储存格式问题,导致再次使用时 ...
- 小白学习django第五站-简易案例
首先在setting.py文件中编写数据库配置内容 DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': ' ...
- java限流工具类
代码 import com.google.common.util.concurrent.RateLimiter; import java.util.concurrent.ConcurrentHashM ...
- C#派生类的构造函数
构造函数的调用顺序是先调用System.Object,再按照层次结构由上向下(基类=>派生类)进行,直到到达编译器要实例化的类为止.在此过程中,每个构造函数都初始化自己类中的字段.编译器先自下而 ...
- CSS-百分百布局
1.照片随着大小变化: 这里面重点就是每个包裹盒子是25%,图片是100%显示: <div class="box2"> <p> //这里都是4个: < ...