构造函数

使用迭代器构造vector的一种方式:

//将v[begin(), end())区间中的元素拷贝给本身
vector(v.begin(),v.end());

在这个构造函数中,传入普通数组也是可以的。如:

int arr[] = {1,2,3,4,5};
vector<int> v(arr,arr + sizeof(arr)/sizeof(int));

assign,at函数

这个assign函数原型有2个:

assign(beg, end);   //将[beg, end)区间中的数据拷贝赋值给本身。
assign(n, elem); //将n个elem拷贝赋值给本身

这个和上一篇介绍的string里面的assign效用一致,就不多说,at也一样。知道vector也有就行了。上一篇

resize和reverse函数

resize(int num);        //重新指定容器的长度为num,若容器变长,则以默认值填充新位置。如果容器变短,则末尾超出容器长度的元素被删除。
resize(int num, int elem); //重新指定容器的长度为num,若容器变长,则以elem值填充新位置。如果容器变短,则末尾超出容器长度的元素被删除。
reserve(int len); //容器预留len个元素长度,预留位置不初始化,元素不可访问。

就如注释上说的一样。

resize函数

resize函数变短时,容量capacity不会缩小。

resize函数有两个重载版本:

  • 只有一个参数int num时,表示重置容器的长度为num。若变长,则用默认值(vector为0)填充,若变短,超出末尾的元素直接被删除。
  • 参数为int num和int elem时,num还是表示重置大小,elem为新填充的元素。只有变大的时候elem才会填充。

看以下例子以及输出结果:

int main()
{
// 构造一个vector,内含100个1,看size和capacity
vector<int> v(100, 1);
cout << "v's size = " << v.size() << endl;
cout << "v's capacity = " << v.capacity() << endl << endl; // resize成5个,看size和capacity,以及打印出每个值
v.resize(5);
for (auto it = v.begin(); it != v.end(); ++it)
cout << *it << " ";
cout << endl << "v's size = " << v.size() << endl;
cout << "v's capacity = " << v.capacity() << endl; // resize成10个,看size和capacity,以及打印出每个值
v.resize(10);
cout << endl << "v's size = " << v.size() << endl;
cout << "v's capacity = " << v.capacity() << endl << endl;
for (auto it = v.begin(); it != v.end(); ++it)
cout << *it << " "; // resize成15个,将新位置填充为指定值,看size和capacity,以及打印出每个值
v.resize(13, -1);
cout << endl << "v's size = " << v.size() << endl;
cout << "v's capacity = " << v.capacity() << endl << endl;
for (auto it = v.begin(); it != v.end(); ++it)
cout << *it << " "; // resize成131个
v.resize(131);
cout << endl << "v's size = " << v.size() << endl;
cout << "v's capacity = " << v.capacity() << endl << endl;
return 0;
}

输出结果:

从图中可以看出来:

  • 若resize成一个比原来小的长度时,capacity不会改变,仅仅改变size.
  • 若resize成一个比原来大的长度且capacity需要改变时,会重新分配capacity,不是与resize的长度一致,而是按照扩容的策略来。

reverse函数

既然有了resize,为什么还需要有reverse函数来改变大小呢?关于resize要很明确:

  • 不初始化,不初始化,不初始化!

  • 不可访问,不可访问,不可访问!

也就是说,reserve只是开辟了这个空间,并没有去做初始化,没有初始化的位置就不能访问,否则会出现不可预料的结果。那么很明显,reserve是直接改变了capacity的值到指定大小。而resize还是采取vector的扩容策略,不断增加(以2倍或1.5倍,不同编译器不同),直到容量满足。

reserve的例子如下:

int main()
{
vector<int> v(10, 1);
cout << "最初:" << endl;
for (auto it = v.begin(); it != v.end(); ++it)
cout << *it << " ";
cout << "v's size = " << v.size() << endl;
cout << "v's capacity = " << v.capacity() << endl;
// 第一次reserve
cout << endl << "reserve to 5:" << endl;
v.reserve(5);
for (auto it = v.begin(); it != v.end(); ++it)
cout << *it << " ";
cout << endl << "v's size = " << v.size() << endl;
cout << "v's capacity = " << v.capacity() << endl;
// 第二次reserve
cout << endl << "reserve to 12:" << endl;
v.reserve(12);
for (auto it = v.begin(); it != v.end(); ++it)
cout << *it << " ";
cout << endl << "v's capacity = " << v.capacity() << endl;
cout << "v's size = " << v.size() << endl;
return 0;
}

结果如下:

从这个例子可以看出:

  • reserve长度减小的时候,是不起作用的。
  • reserve长度增加的时候,会新开辟相应的空间,不做初始化,不能访问。且容量capacity就是reserve的大小,而不是采用以往的扩容策略。

reserve的好处在哪里?

当我们的容器容量需要比较大,且可以预估我们容器的大小的时候,最好使用reserve。

如果我们使用普通的扩容策略,那么要扩容很多次(耗费性能,搬迁数据)才可能达到我们所需要的容量,且可能超出我们所需要容量的许多(空间冗余),等等问题。

插入、删除函数

erase函数

erase(const_iterator start, const_iterator end);//删除迭代器从[start,end)之间的元素
erase(const_iterator pos); //删除迭代器指向的元素

还是和上一篇讲述的差不多,可以参照上一篇

只需注意,返回的是删除之后指向的第一个元素的迭代器。

insert函数

几个函数原型:

// 在迭代器position之前插入单个val
iterator insert (const_iterator position, const value_type& val);
// 在迭代器position之前插入n个val
iterator insert (const_iterator position, size_type n, const value_type& val);
// 在迭代器position之前插入迭代器first到end之间的数据,左闭右开。
iterator insert (const_iterator position, InputIterator first, InputIterator last);

注意到返回值都是迭代器类型,没错,它返回的都是指向新插入的元素的首元素的迭代器。

以上单个插入和范围插入,均可参照上一篇。不多赘述。

swap函数

swap函数就是将两个容器交换。内部是直接交换指向各自vector的指针,而不是数据交换,这样节省了大量的时间。

int main()
{
vector<int> v1(5, -1);
vector<int> v2(24, 1); cout << "v1地址: " << &v1[0] << endl;
cout << "v2地址: " << &v2[0] << endl; v1.swap(v2); cout << "v1地址: " << &v1[0] << endl;
cout << "v2地址: " << &v2[0] << endl;
return 0;
}

运行结果如下:

由结果可见,二者地址互换。

swap的技巧有很多,这里介绍两种:收缩空间与释放空间。

swap收缩容器空间和释放空间

现在考虑我们上述讲到的,我们resize时若长度变短,capacity值不会变,这样就造成了空间冗余,不需要了。我们可以用swap将它释放掉:

int main()
{
vector<int> v;
for (int i = 0; i < 100000; i++){
v.push_back(i);
}
cout << "初始状态:" << endl;
cout << "capacity:" << v.capacity() << endl;
cout << "size:" << v.size() << endl; //此时 通过resize改变容器大小
v.resize(10); cout << endl << "resize to 10 之后:" << endl;
cout << "capacity:" << v.capacity() << endl;
cout << "size:" << v.size() << endl; // swap收缩空间
vector<int>(v).swap(v); cout << endl << "收缩空间:" << endl;
cout << "capacity:" << v.capacity() << endl;
cout << "size:" << v.size() << endl; // swap释放空间
vector<int>().swap(v); cout << endl << "释放空间:" << endl;
cout << "capacity:" << v.capacity() << endl;
cout << "size:" << v.size() << endl;
return 0;
}

输出结果为:

可以看到进行resize之后,仅仅只改变了size,如果我们接下去只需要用resize之后的空间,那么剩余的空间就成了多余的。所以我们先收缩空间,使得capacity和size一样。

收缩空间的代码:

vector<int>(v).swap(v);

分析一下这一句做了什么操作。可看为:

{
vector<int> vTemp(v);
vTemp.swap(v);
}

我们创建一个临时对象vTemp,将v中数据拷贝进去,与我们的v进行swap操作,我们的v就指向了vTemp。而vTemp出了这个作用域就被自动析构了。也就是原来的v被析构了。 所以,上面我们创建一个匿名对象,这个匿名对象的初值就是用v来拷贝的,用这个匿名对象与v进行swap操作即可。

如果我们不再使用这个容器,可以将它释放掉。

同理,释放空间的代码:

vector<int>().swap(v);

与上述一致,只不过这一次我们创建的匿名对象没有给初值,就会调用默认构造函数,置空了。然后我们的v再指向了这个空容器,原本的v指向了匿名对象的空间,被自动析构,达到我们想要的效果。

补充,关于clear函数

上面讲到可以巧用swap来进行释放空间,那clear不行吗?这也是我在上一篇没有讲到的事情。 clear函数只能做到将size清零,也没有将capacity清理掉,所以这一块内存我们还在占用。如果我们要回收,将这些都释放,使用swap就可以办法。

这个很容易验证,创建个容器,赋值,调用clear,再查看此容器的size和capacity,会看到capacity不为0.(vector和string都是如此,但也有其它不是如此的,如deque,clear后会释放空间).

我不熟悉的vector的更多相关文章

  1. hdu 4409 Family Name List(LCA&amp;有坑点)

    Family Name List Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  2. ACM中使用 JAVA v2. 1

    ACM中使用JAVA v2.1 严明超 (Blog:mingchaoyan.blogbus.com Email:mingchaoyan@gmail.com) 0.前 言 文前声明:本文只谈java用于 ...

  3. c++转载系列 std::vector模板库用法介绍

    来源:http://blog.csdn.net/phoebin/article/details/3864590 介绍 这篇文章的目的是为了介绍std::vector,如何恰当地使用它们的成员函数等操作 ...

  4. 6. support vector machine

    1. 了解SVM 1. Logistic regression 与SVM超平面 给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些数据分成两类.如果用x表示数据点,用y表示类别( ...

  5. 学习RaphaelJS矢量图形包--Learning Raphael JS Vector Graphics中文翻译(一)

    (原文地址:http://www.cnblogs.com/idealer3d/p/LearningRaphaelJSVectorGraphics.html) 前面3篇博文里面,我们讲解了一本叫做< ...

  6. 快速熟悉Velocity

    果然公司用的东西跟平时学的东西不太一样,我们公司前台页面并不是我们熟悉的.html或者.jsp文件,而是很多人不知道的 .vm文件,其实只要我们理解了jsp文件,vm文件也就是一些基本语法不同而已. ...

  7. STL vector用法介绍

    STL vector用法介绍 介绍 这篇文章的目的是为了介绍std::vector,如何恰当地使用它们的成员函数等操作.本文中还讨论了条件函数和函数指针在迭代算法中使用,如在remove_if()和f ...

  8. 斯坦福第十二课:支持向量机(Support Vector Machines)

    12.1  优化目标 12.2  大边界的直观理解 12.3  数学背后的大边界分类(可选) 12.4  核函数 1 12.5  核函数 2 12.6  使用支持向量机 12.1  优化目标 到目前为 ...

  9. c++ vector 简单实现。

    第二次修改: 1)熟悉基本的模板编程,头文件和定义必须放到一起. 2)熟悉内存管理模板类 allocator<T>. 1.使用标准库的内存管理类 allocator<T> 代替 ...

随机推荐

  1. .Net Core控制台应用加载读取Json配置文件

    ⒈添加依赖 Microsoft.Extensions.Configuration Microsoft.Extensions.Configuration.FileExtensions Microsoft ...

  2. cmd_操作MySQL数据库

    建议用 TXT 文档来写代码 然后粘贴至cmd命令直接运行创建students库,表名为student,表包含以下字段: id(主键) name(姓名) age(年龄) sex(性别) sc(综合积分 ...

  3. Codeforces 1221E. Game With String

    传送门 首先每一段连续的 $...$ 都是互不影响的,所以可以一段段考虑 考虑最简单的情况,此时每一段都大于等于 $a$ 并且小于 $2b$ ,那么每一段都只能放一次,胜负直接根据段数即可得到答案 考 ...

  4. Web前端开发中的小错误

    Web前端开发中的小错误 错误1:表单的label标签跟表单字段没有关联 利用“for”属性允许用户单击label也可以选中表单中的内容.这可以扩大复选框和单选框的点击区域,非常实用. 错误2:log ...

  5. 中文转拼音,pinyin4j实用示例

    Pinyin4j是一个流行的Java库,支持中文字符和拼音之间的转换.拼音输出格式可以定制. Support Chinese character (both Simplified and Trandi ...

  6. 小程序之textarea层级最高问题

    1.textarea位于底部固定定位按钮下方,会导致点击底部按钮,textarea获取到焦点. 解决方法如下 view与textarea之间在聚焦和失去焦点进行切换 cursor-spacing是te ...

  7. python中字符串格式化的意义(化妆)

    格式 描述%% 百分号标记 #就是输出一个%%c 字符及其ASCII码%s 字符串%d 有符号整数(十进制)%u 无符号整数(十进制)%o 无符号整数(八进制)%x 无符号整数(十六进制)%X 无符号 ...

  8. python、mysql三-3:完整性约束

    一 介绍 约束条件与数据类型的宽度一样,都是可选参数 作用:用于保证数据的完整性和一致性主要分为: PRIMARY KEY (PK) 标识该字段为该表的主键,可以唯一的标识记录 FOREIGN KEY ...

  9. concurrent.futures:线程池,让你更加高效、并发的处理任务

    并发任务池 concurrent.futures模块提供了使用工作线程或进程池运行任务的接口. 线程池和进程池的API是一致的,所以应用只需要做最小的修改就可以在线程和进程之间进行切换 这个模块提供了 ...

  10. Head First设计模式 装饰者模式

    装饰器模式 典型的例子:JAVA IO. 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其结构.这种类型的设计模式属于结构型模式,它是作为现有的类的一个 ...