CF261E Maxim and Calculator

题目大意:

有两个初始参数 $ a=1 $ , $ b=0 $ ,你可以对它们进行两个操作: $ b~+=1 $ 或 $ a~\times =b $ ,最终的 $ a $ 才是你所得到的数 。 现在给你三个数 $ l,r,p $ ,让你求在区间 $ [l,r] $ 内可以用不超过 $ p $ 次操作得到的数的个数。数据范围: $ (2<=l<=r<=10^{9},1<=p<=100) $



$ solution: $

很神仙的一道题,当时看了很久只能想到:每个我所得到的数,一定是若干个可能不同的 $ b $ 的乘积,。又因为 $ b $ 每次只能加1,所以我们如果要用最少的步数得到一个数 $ a $ ,最终 $ b $ 的大小一定是 $ b $ 的最大质因子!同理,最大质因子大于 $ p $ 的数一定不可通过少于 $ p $ 的次数得到

当时的想法是线性筛最大质因子,然后暴力判断,复杂度 $ O(n) $ 显然超时。然后死活没想到可以筛 $ p $ 以下质数所构成的数( $ 10^9 $ 里面不超过 $ 3\times 10^6 $ 个 )!

好吧,回归正题。根据上面我们的分析,所有最大质因子大于 $ p $ 的数一定不可通过少于 $ p $ 的次数得到,所以我们可以找出所有最大质因子在 $ p $ 以内的数。怎么求?这其实等同于求 $ p $ 以内的所有质数可以构造的数(注意题目说 $ 2\leq r $ ,所以不考虑1)(然后我们现线性筛质数,再搜索一下即可)。然后我们发现这样的数不超过 $ 3\times 10^6 $ 个,我们用一个数组 $ a[] $ 存起来。于是我们考虑怎么判断 $ a[] $ 里面的数是否能在 $ p $ 次操作内得到。

首先我们要明白一个点:所有 $ a[] $ 里的数都可以通过 $ a[] $ 里比它小的数构造出来。证明:对于 $ a[] $ 里的数 $ i $ ,如果它的最大质因子为 $ k $ ,那么 $ i/k $ 一定在 $ a[] $ 中,因为 $ i/k $ 的所有质因子都小于 $ p $ 。于是我们考虑 $ f[i][j] $ 表示 $ b $ 的大小为 $ i $ 时 $ j $ 的最小构造步数。我们从小到达枚举 $ b $ ,每个 $ b $ 可以选用很多次,这不就是一个完全背包吗?不过是 $ b $ 要被乘上去而已!注意我们的 $ a[] $ 数组是离散化的,我们先排一遍序,然后用单调队列找到 $ a[k]=a[j]*i $ 即可做到 $ O(1) $ 转移!

$ f[i][k]=f[i][j]+1 \quad (~a[j]\times i=a[k]~) $

复杂度: $ O(p\times 3 \times 10^6) $ ,很勉强



$ code: $

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set> #define ll long long
#define db double
#define rg register int using namespace std; int l,r,p,n; // n表示a数组的大小
int ans,tt; // tt素数个数
int a[3000005]; //最大质因子小于p的数的集合
int f[3000005]; //构造a[i]这个数的最少步数
bool d[3000005]; //是否已经加入贡献
int pr[505]; //素数表
bool vis[505]; //筛素数 inline int qr(){
register char ch; register bool sign=0; rg res=0;
while(!isdigit(ch=getchar()))if(ch=='-')sign=1;
while(isdigit(ch))res=res*10+(ch^48),ch=getchar();
if(sign)return -res; else return res;
} inline void prime(int x){ //线性筛素数
for(rg i=2;i<=x;++i){
if(!vis[i])pr[++tt]=i;
for(rg j=1;j<=tt;++j){
if(i*pr[j]>x)break;
vis[i*pr[j]]=1;
if(!(i%pr[j]))break;
}
}
} //找到最大质因子小于p的数
//等效于我们构造小于p的质数所能构造的数
inline void dfs(int i,ll v){ //i是当前轮到的质数
if(i>tt)return ;
dfs(i+1,v); //不用这个质数
while(1){
v*=pr[i]; //不断选用这个质数
if(v>r)return ; //退出
dfs(i+1,v);
a[++n]=v; //记录这个数
}
} int main(){
l=qr(); r=qr(); p=qr();
prime(p); dfs(1,1); a[++n]=1; //预处理
sort(a+1,a+n+1); f[1]=0;
for(rg i=2;i<=n;++i) f[i]=101; //赋初值无穷大
for(rg i=2;i<=p;++i){
for(rg j=1,k=1;j<=n;++j){
while(k<=n&&a[j]*i>a[k])++k; //因为a数组离散化,所以单调队列查找
if(k>n)break; if(a[j]*i!=a[k])continue;
f[k]=min(f[k],f[j]+1); //更新步数
if(d[k]||f[k]+i>p||a[k]<l)continue; //注意第二个判断
d[k]=1; ++ans; //步数在p范围内,计入答案
}
}
printf("%d\n",ans);
return 0;
}

CF261E Maxim and Calculator (质数,完全背包)的更多相关文章

  1. CF261E Maxim and Calculator

    CF261E Maxim and Calculator 洛谷评测传送门 题目描述 Maxim has got a calculator. The calculator has two integer ...

  2. [CF261E]Maxim and Calculator_搜索_欧拉筛素数_动态规划

    Maxim and Calculator 题目链接:https://www.luogu.org/problem/CF261E 数据范围:略. 题解: 考试的时候只会暴力,学弟太强了$\%\%\% Or ...

  3. Codeforce 水题报告

    最近做了好多CF的题的说,很多cf的题都很有启发性觉得很有必要总结一下,再加上上次写题解因为太简单被老师骂了,所以这次决定总结一下,也发表一下停课一星期的感想= = Codeforces 261E M ...

  4. 考前停课集训 Day2 非

    因为太长了 所以一天一天分开发 Day2 昨天晚上没开黑车 没脱衣服就睡了 可能是我难受了…… 新的一天. 早上好. 我没去晨跑,早上先和团长集合了,没看见rkbudlo来 于是就先吃饭了 去机房的时 ...

  5. HGOI 20190519 题解

    脑补了一下今天的比赛难度和之前zju-lzw出的题目画风迥异. 难度完全不是一个水平的好伐. Probem A palindrome 给出一个$n$个元素的数组,可以任意指定一个数字$m$让所有$a_ ...

  6. Codeforces 922 思维贪心 变种背包DP 质因数质数结论

    A #include <bits/stdc++.h> #define PI acos(-1.0) #define mem(a,b) memset((a),b,sizeof(a)) #def ...

  7. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

  8. BZOJ 1025: [SCOI2009]游戏( 背包dp )

    显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...

  9. hdu 6125 -- Free from square(状态压缩+分组背包)

    题目链接 Problem Description There is a set including all positive integers that are not more then n. Ha ...

随机推荐

  1. 【洛谷T89379 【qbxt】复读警告】

    题目链接 这个题可以应用dp #include<bits/stdc++.h> using namespace std; ; inline int read() { ,b=; char c= ...

  2. 2、electron进程

    electron核心我们可以分成2个部分,主进程和渲染进程. 主进程: 主进程连接着操作系统和渲染进程,可以把她看做页面和计算机沟通的桥梁. Electron 运行 package.json 的 ma ...

  3. Spring 缓存切面

    缓存切面:[通知+目标方法调用] 缓存操作执行过程: 1)如果是同步调用[sync=true],则首先尝试从缓存中读取数据,读取到则直接返回: 否则执行目标方法,将结果缓存后返回. 2)如果不是同步调 ...

  4. 中国MOOC_零基础学Java语言_期末考试的编程题_1二进制的前导的零

    期末考试的编程题 返回   这是期末考试的编程题,在60分钟内,你可以多次提交,直到正确为止. 温馨提示: 1.本次考试属于Online Judge题目,提交后由系统即时判分. 2.学生可以在考试截止 ...

  5. 什么是SLF,PSL,MLF,SLO?

    受国际经济金融形势不确定性增强以及各种影响流动性的因素波动较大影响,近年来我国银行体系短期流动性供求的波动性有所加大,尤其是当多个因素相互叠加或市场预期发生变化时,有可能出现市场短期资金供求缺口难以通 ...

  6. 笨办法学python 13题:pycharm 运行

    笨办法学python 13题 代码: # -*- coding: utf-8 -*- from sys import argv # argv--argument variable 参数变量 scrip ...

  7. 【ABAP系列】SAP ABAP 关于四舍五入算法

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP ABAP 关于四舍五入算 ...

  8. [Git] 015 远程仓库篇 第二话

    0. 前言 在 [Git] 006 在本地新建一个仓库 中,我在本地建了一个仓库 "git_note" 这回的任务 在 GitHub 上建一个远程仓库:为方便记忆,我就起名为 &q ...

  9. express 实现我猜你喜欢功能

    工具:利用cookie-parser中间件; 原理: 每次访问某一具体的文章,就表明可能客户端对这类文章感兴趣, 将这类文章的标签添加到cookie里,字段是like; 然后退回到含有 我猜你喜欢模块 ...

  10. 万万没想到,Spring Boot 竟然这么耗内存!

    Spring Boot总体来说,搭建还是比较容易的,特别是Spring Cloud全家桶,简称亲民微服务. 但在发展趋势中,容器化技术已经成熟,面对巨耗内存的Spring Boot,小公司表示用不起. ...