题目描述

在\(n*m\)的矩阵内每一行每一列都有钻石,问钻石分布的种类?

答案有可能很大,所以输出答案对\(1000000007\)取模。

Input

对于每个测试用例,有两个整数\(n\)和\(m\)表示框的大小。\(0< N,M<50\)

Output

输出每组数据的分发数.

Sample Input

1 1
2 2
2 3

Sample Output

1
7
25

这是一道比较优秀的容斥题。

首先,我们很显然的看到\(n,m\)范围都不是很大,考虑\(dp\)。

定义\(dp[i][j]\)表示有\(i\)行和\(j\)列已经满足条件的方案数。

至于为什么是有\(i\)行和\(j\)列,而不是前\(i\)行和\(j\)列,因为相对应前\(i\)行,有\(i\)行会较简单,比较好求。

求完后直接容斥即可。

下面有了定义我们就可以直接开始大力\(dp\)了。

对于当前考虑的\(i\)行\(j\)列,若不考虑钻石的放置一共有\(2^{i*j}\)中取法。

而现在我们需要将其中不满足条件的方案给去掉。

对于有\(i\)行\(j\)列的,我们需要去掉的是少于\(i\)行\(j\)列的,而我们的\(dp\)是从小到大枚举的。

所以,当我们求\(dp[i][j]\)时,\(dp[i-1][j]...\)等的\(dp\)值我们都已经求出来了。

而把\(i\)行\(j\)列的方案中去掉\(a\)行\(b\)列的方案不就是从\(i\)行\(j\)列中选\(a\)行\(b\)列吗?

行和列可以分开来算,即从\(i\)行\(j\)列中选\(a\)行\(b\)列的方案数=从\(i\)行中选\(a\)行的方案数*从\(j\)列中选\(b\)列的方案数。

即\(C(i,a)*C(n,j)\)。

同样我们枚举所有小于等于\((i,j)\)的点对,同时减去这些不满足条件的方案就好了。

注意负数要加上模数再取模

代码如下

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath> using namespace std; #define int long long
#define reg register
#define Raed Read
#define clr(a,b) memset(a,b,sizeof a)
#define Mod(x) (x>=mod)&&(x-=mod)
#define debug(x) cerr<<#x<<" = "<<x<<endl;
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)>(b)?(b):(a))
#define rep(a,b,c) for(reg int a=(b),a##_end_=(c); a<=a##_end_; ++a)
#define ret(a,b,c) for(reg int a=(b),a##_end_=(c); a<a##_end_; ++a)
#define drep(a,b,c) for(reg int a=(b),a##_end_=(c); a>=a##_end_; --a)
#define erep(i,G,x) for(int i=(G).Head[x]; i; i=(G).Nxt[i])
#pragma GCC target("avx,avx2,sse4.2")
#pragma GCC optimize(3) inline int Read(void) {
int res=0,f=1;
char c;
while(c=getchar(),c<48||c>57)if(c=='-')f=0;
do res=(res<<3)+(res<<1)+(c^48);
while(c=getchar(),c>=48&&c<=57);
return f?res:-res;
} template<class T>inline bool Min(T &a, T const&b) {
return a>b?a=b,1:0;
}
template<class T>inline bool Max(T &a, T const&b) {
return a<b?a=b,1:0;
} const int N=55,M=1e5+5,mod=1e9+7; bool MOP1; int n,m,Fac[N],Inv[N],V[N],Pow[N*N],dp[N][N]; int C(int a,int b) {
return ((Fac[a]*Inv[a-b])%mod*Inv[b])%mod;
} bool MOP2; inline void _main(void) {
Fac[0]=Inv[0]=Fac[1]=V[1]=Inv[1]=Pow[0]=1ll;
rep(i,2,50) {
Fac[i]=(Fac[i-1]*i)%mod;
V[i]=(mod-mod/i)*V[mod%i]%mod;
Inv[i]=(Inv[i-1]*V[i])%mod;
}
rep(i,1,2500)Pow[i]=Pow[i-1]*2ll%mod;
rep(i,0,50)rep(j,0,50) {
dp[i][j]=Pow[i*j];
rep(a,0,i)rep(b,0,j) {
if(a==i&&b==j)continue;
dp[i][j]=(dp[i][j]-((dp[a][b]*C(i,a))%mod*C(j,b))%mod)%mod;
}
dp[i][j]=(dp[i][j]+mod)%mod;
}
while(~scanf("%lld %lld",&n,&m)) {
printf("%lld\n",dp[n][m]);
}
} signed main() {
_main();
return 0;
}

\(update.in.2019.9.10\)

发现教练的一种极强的做法,可以支持\(n,m\)高达\(1e5\)的做法,时间复杂度\(O(m*log_n)\)。

设\(f(i)\)表示至少有\(i\)列没有被覆盖的情况,一定不放的列有\(C(m,i)\)中选法。

再依次考虑每一行,剩下的\(m-i\)列,有\(2^{m-i}\)中放法,需要减掉全部都不放的情况,因为要保证每行至少要有一个。故有\(2^{m-i}-1\)种放法。

也就是说,确定了哪些列不放之后,每一行\(2^{m-i}-1\)种放法,所以总的放法有\((2^{m-i}-1)^n\)。

\(f(0)\)表示至少有0列一定不放,这就是所有的情况。

其中包含了至少有1列不放的情况,需要减掉。还需要把至少有2列不放的情况加回来,依次类推,有如下结果:\(ans=\sum (-1)^i*C(m,i)*(2^{m-i}-1)^n\)

代码如下:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath> using namespace std; #define int long long
#define reg register
#define Raed Read
#define clr(a,b) memset(a,b,sizeof a)
#define Mod(x) (x>=mod)&&(x-=mod)
#define debug(x) cerr<<#x<<" = "<<x<<endl;
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)>(b)?(b):(a))
#define rep(a,b,c) for(reg int a=(b),a##_end_=(c); a<=a##_end_; ++a)
#define ret(a,b,c) for(reg int a=(b),a##_end_=(c); a<a##_end_; ++a)
#define drep(a,b,c) for(reg int a=(b),a##_end_=(c); a>=a##_end_; --a)
#define erep(i,G,x) for(int i=(G).Head[x]; i; i=(G).Nxt[i])
#pragma GCC target("avx,avx2,sse4.2")
#pragma GCC optimize(3) inline int Read(void) {
int res=0,f=1;
char c;
while(c=getchar(),c<48||c>57)if(c=='-')f=0;
do res=(res<<3)+(res<<1)+(c^48);
while(c=getchar(),c>=48&&c<=57);
return f?res:-res;
} template<class T>inline bool Min(T &a, T const&b) {
return a>b?a=b,1:0;
}
template<class T>inline bool Max(T &a, T const&b) {
return a<b?a=b,1:0;
} const int N=1e5+5,M=1e5+5,mod=1e9+7; bool MOP1; inline int Pow(int x,int y) {
int res=1;
while(y) {
if(y&1)res=(res*x)%mod;
x=x*x%mod,y>>=1;
}
return res;
} int Fac[N],Inv[N],Pow_2[N],V[N]; int C(int a,int b) {
if(a<b||b<0)return 0;
return 1ll*Fac[a]*((1ll*Inv[a-b]*Inv[b])%mod)%mod;
} bool MOP2; inline void _main(void) {
Fac[0]=Inv[0]=Fac[1]=V[1]=Inv[1]=Pow_2[0]=1ll;
Pow_2[1]=2ll;
ret(i,2,N) {
Fac[i]=(1ll*Fac[i-1]*i)%mod;
V[i]=1ll*(mod-mod/i)*V[mod%i]%mod;
Inv[i]=(1ll*Inv[i-1]*V[i])%mod;
Pow_2[i]=1ll*Pow_2[i-1]*2%mod;
}
int n,m;
while(~scanf("%d %d\n",&n,&m)) {
int Ans=0;
rep(i,0,m) {
int temp=1ll*C(m,i)*Pow(Pow_2[m-i]-1,n)%mod;
if(i&1)Ans-=temp;
else Ans+=temp;
if(Ans>mod)Ans-=mod;
if(Ans<0)Ans+=mod;
}
printf("%d\n",Ans);
} } signed main() {
_main();
return 0;
}

HDU-5155 Harry And Magic Box的更多相关文章

  1. HDU 5155 Harry And Magic Box --DP

    题意:nxm的棋盘,要求每行每列至少放一个棋子的方法数. 解法:首先可以明确是DP,这种行和列的DP很多时候都要一行一行的推过去,即至少枚举此行和前一行. dp[i][j]表示前 i 行有 j 列都有 ...

  2. [HDOJ 5155] Harry And Magic Box

    题目链接:HDOJ - 5155 题目大意 有一个 n * m 的棋盘,已知每行每列都至少有一个棋子,求可能有多少种不同的棋子分布情况.答案对一个大素数取模. 题目分析 算法1: 使用容斥原理与递推. ...

  3. 【HDOJ】5155 Harry And Magic Box

    DP.dp[i][j]可以表示i行j列满足要求的组合个数,考虑dp[i-1][k]满足条件,那么第i行的那k列可以为任意排列(2^k),其余的j-k列必须全为1,因此dp[i][j] += dp[i- ...

  4. 【hihocoder】 Magic Box

    题目1 : Magic Box 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 The circus clown Sunny has a magic box. When ...

  5. hihocoder 1135 : Magic Box

    #1135 : Magic Box 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 The circus clown Sunny has a magic box. Whe ...

  6. hdu 5155(递推)

    Harry And Magic Box Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  7. BestCoder Round #25 1002 Harry And Magic Box [dp]

    传送门 Harry And Magic Box Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  8. 微软2016校园招聘在线笔试之Magic Box

    题目1 : Magic Box 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 The circus clown Sunny has a magic box. When ...

  9. Harry And Magic Box HDU - 5155

    题目链接:https://vjudge.net/problem/HDU-5155#author=0 题意:在一个n*m的方格中要满足每一行每一列至少有一个珠宝,问总共有多少种方案. 思路:利用递推的思 ...

  10. D. Magic Box(几何)

    One day Vasya was going home when he saw a box lying on the road. The box can be represented as a re ...

随机推荐

  1. web前端:上传文件夹(需支持多浏览器)

    在Web应用系统开发中,文件上传和下载功能是非常常用的功能,今天来讲一下JavaWeb中的文件上传和下载功能的实现. 先说下要求: PC端全平台支持,要求支持Windows,Mac,Linux 支持所 ...

  2. Springboot 默认静态路径

    springboot 默认静态路径 代码如下所示 类ResourceProperties.class private static final String[] CLASSPATH_RESOURCE_ ...

  3. [转载]blktrace分析IO

    前言 上篇博客介绍了iostat的一些输出,这篇介绍blktrace这个神器.上一节介绍iostat的时候,我们心心念念希望得到块设备处理io的service time,而不是service time ...

  4. [pytorch笔记] 调整网络学习率

    1. 为网络的不同部分指定不同的学习率 class LeNet(t.nn.Module): def __init__(self): super(LeNet, self).__init__() self ...

  5. spring注解版

    第一.spring框架快速入门 1.1什么是spring 框架 Spring 框架是 Java 应用最广的框架,它的成功来源于理念,而不是技术本身,它的理念包括 IoC (Inversion of C ...

  6. SQLMAP自注入--INJECTION TECGBUQUES FINGERPRINT

    -p参数 指定扫描的参数 ,使--level失效 -p“user-agent,refer”这些参数也可以通过-p来指定 sqlmap.py -u "http://127.0.0.1/muti ...

  7. 图解数据库中的join操作

    1.所有的join都从cross join衍生而来 2.所有join图示 转自Say NO to Venn Diagrams When Explaining JOINs

  8. ValidateUtil常用验证工具类,如手机、密码、邮箱等

    package cn.com.ssk.util.utils; import java.util.regex.Pattern; import org.apache.commons.lang3.Strin ...

  9. 快速排序和二分查找(Java)

    import java.util.Arrays; public class Main { public static void main(String[] args) { int[] data = { ...

  10. 【学习】SpringBoot之简介、特点、缺点、应用场景

    Spring Boot 的介绍 SpringBoot的目的在于创建和启动新的基于Spring框架的项目.Spring Boot 会选择最合适的Spring子项目和第三方开源库进行整合.大部分Sprin ...