期望\(DP\)入门题目。

关键思想:无向边的转移作为有向边考虑。其他的就是直接上全期望公式。由于这个题目不是有向无环图,所以需要高斯消元搞一搞。

设每个点的期望经过次数是\(g(x)\),那么有

\[g(u) = \sum_{v} \frac{1}{out(v)}*g(v)
\]

特殊的,我们认为点\(1\)有一个一定经过的入边,且不考虑点\(n\)的所有出边。

这个\(g\)很好做啊,我们高斯消元搞一搞就好了。那边的期望经过次数\(f(x)\)也就显而易见。

\[f(x) = \frac{g(u)}{out(u)} + \frac{g(v)}{out(v)}
\]

然后这个题就做完了。

#include <bits/stdc++.h>
using namespace std; const int N = 500 + 5; int n, m, u[N * N], v[N * N], out[N]; vector <int> G[N]; double ans, f[N * N], g[N], mat[N][N]; void gauss_jordan () {
for (int i = 1; i <= n; ++i) {
int besti = i;
for (int j = i; j <= n; ++j) {
if (fabs (mat[besti][i]) < fabs(mat[j][i])) {
besti = j;
}
}
if (i != besti) swap (mat[i], mat[besti]);
for (int j = 1; j <= n; ++j) {
if (i == j) continue;
double t = mat[j][i] / mat[i][i];
for (int k = i; k <= n + 1; ++k) {
mat[j][k] -= mat[i][k] * t;
}
}
}
for (int i = 1; i <= n; ++i) {
g[i] = mat[i][n + 1] / mat[i][i];
}
} int main () {
// freopen ("data.in", "r", stdin);
cin >> n >> m;
for (int i = 1; i <= m; ++i) {
cin >> u[i] >> v[i];
G[u[i]].push_back (v[i]); if (u[i] != n) out[u[i]]++;
G[v[i]].push_back (u[i]); if (v[i] != n) out[v[i]]++;
}
mat[1][n + 1] = 1;
for (int u = 1; u <= n; ++u) {
mat[u][u] = 1;
for (int i = 0; i < G[u].size (); ++i) {
int v = G[u][i];
if (v == n) {
mat[n][v] = -1.0 / out[v];
} else {
mat[u][v] = -1.0 / out[v];
}
}
}
gauss_jordan ();
for (int i = 1; i <= m; ++i) {
if (u[i] != n) f[i] += g[u[i]] / out[u[i]];
if (v[i] != n) f[i] += g[v[i]] / out[v[i]];
}
sort (f + 1, f + 1 + m);
for (int i = 1; i <= m; ++i) {
ans += (m - i + 1) * f[i];
}
cout << fixed << setprecision (3) << ans << endl;
}

【BZOJ3143】【Luogu P3232】 [HNOI2013]游走 概率期望,图论的更多相关文章

  1. BZOJ.3143.[HNOI2013]游走(概率 期望 高斯消元)

    题目链接 参考 远航之曲 把走每条边的概率乘上分配的标号就是它的期望,所以我们肯定是把大的编号分配给走的概率最低的边. 我们只要计算出经过所有点的概率,就可以得出经过一条边(\(u->v\))的 ...

  2. BZOJ 3143 Luogu P3232 [HNOI2013]游走 (DP、高斯消元)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3143 (luogu) https://www.luogu.org/pro ...

  3. [HNOI2013] 游走 - 概率期望,高斯消元,贪心

    假如我们知道了每条边经过的期望次数,则变成了一个显然的贪心.现在考虑如何求期望次数. 由于走到每个点后各向等概率,很显然一条边的期望次数可以与它的两个端点的期望次数,转化为求点的期望次数 考虑每个点对 ...

  4. P3232 [HNOI2013]游走 解题报告

    P3232 [HNOI2013]游走 题目描述 一个无向连通图,顶点从\(1\)编号到\(N\),边从\(1\)编号到\(M\). 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概 ...

  5. BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元

    BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机 ...

  6. 题解 P3232 [HNOI2013]游走

    洛谷P3232[NOI2013]游走 题目描述 给定一个 n 个点 m 条边的无向连通图,顶点从 1 编号到 n,边从 1 编号到 m. 小 Z 在该图上进行随机游走,初始时小 Z 在 1 号顶点,每 ...

  7. BZOJ 3143: [Hnoi2013]游走 概率与期望+高斯消元

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M.小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获 ...

  8. [bzoj3143] [洛谷P3232] [HNOI2013] 游走

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...

  9. P3232 [HNOI2013]游走——无向连通图&&高斯消元

    题意 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编 ...

随机推荐

  1. Redis客户端信息的存取

    字符串的存: set name xxx 字符串的取: get name Hashes的存: HMSET xxx xxx xxx Hashes的取: HGETALL xxx Lists的存: lpush ...

  2. 实验----Java的二维数组的应用及杨辉三角的编写

    (1) 编写一个程序,生成一个10*10的二维随机整数数组,并将该数组的每行最大值保存于一个一维数组中,将每列平均值保存于另外一个一维数组中并分别输出. (2) 编程输出杨辉三角的前10行. 找出一个 ...

  3. 华为HCNA乱学Round 10:PPP&PAP

  4. VM Centos 连不上网或者ping不通问题汇总

    首先检查windows关于VM的服务有没有开启.没有开启的都开起来 通过复制形式建立的虚拟机,注意修改网卡地址.和cfg文件的UUID. 虚拟机ip能正常显示但是windows电脑ping不通虚拟机. ...

  5. 好用的 Chrome 插件

    这些好用的 Chrome 插件,提升你的工作效率   本文首发于我的公众号 Linux云计算网络(id: cloud_dev),专注于干货分享,号内有 10T 书籍和视频资源,后台回复「1024」即可 ...

  6. run.sh

    1.run.sh   文件  ./run.sh start启动    ./run.sh stop 停止    ./run.sh restart重启     ./run.sh install安装     ...

  7. C++游戏服务器编程笔记 IP详解

    C++游戏服务器编程笔记 IP详解 IP详解 INTERNET的历史 上世纪60年底起源于美国 1992年,Internet上的主机超过了100万台 现在已经是现代文明人的必需品    TCP/IP的 ...

  8. python_0基础开始_day11

    第十一节 一,函数名的第一类对象 函数名当作值,赋值给变量 print(函数名) 查看看书的内存地址 函数名可以当作容器中的元素 lis = []dic = {}def func():    prin ...

  9. jinja2介绍

    jinja2介绍 jinja2是Flask作者开发的一个模板系统,起初是仿django模板的一个模板引擎,为Flask提供模板支持,由于其灵活,快速和安全等优点被广泛使用. jinja2的优点 jin ...

  10. The Party and Sweets CodeForces - 1159C (拓排)

    优化连边然后拓排. #include <iostream> #include <sstream> #include <algorithm> #include < ...