POJ 3728 The merchant (树形DP+LCA)
题目:https://vjudge.net/contest/323605#problem/E
题意:一棵n个点的树,然后有m个查询,每次查询找(u->v)路径上的两个数,a[i],a[j],(i<j)a[j]-a[i]的最大值,j必须是u->v路径上出现的比i晚
思路:首先我们路径肯定是确定只有一条的,然后我们怎么找出那条路径呢,我们可以求LCA,求出u->LCA(u,v) LCA(u,v)->v ,这样我们就能把路径给确定出来
然后我们先简化问题,如果是一个序列,我们要找两个数的最大差值,我们可以维护一个单调栈,然后每次求最大差值,复杂度为O(n),我们可以先用LCA把路径求出来,然后直接O(n)遍历出来即可,但是查询数量有 <=50000,会超时,这个时候我们只能想能不能预处理一些有用的东西,然后O(1)查询出来,因为LCA复杂度为O(logn)*(O(m)查询数)复杂度正好,我们可以优化上述算法,首先我们肯定和最大值最小值有关,我们求出每个点到LCA的最小值,和LCA到当前点的最大值,然后如何练习起来呢,其实我们可以把路径合并,首先两个点之间间隔一条边,肯定就是max(value[v]-value[u],0),然后合并的时候有一个转移方程,max(u->LCA(u,v)的利润,LCA(u,v)->v的利润,max(LCA(u,v)->v)-min(u,LCA(u,v)) ), 为什么呢下面给出三个例子
例子一,这个就是用maxvalue-minvalue
例子二,这个就是u->LCA(u,v)情况
例子三,这个就是LCA(u,v)->v的情况
然后差不多就可以解出来了,因为本人对LCA还不会太操作,然后就没写代码了,发现自己思路是对的,就直接贴别人代码了>_<
来源:https://blog.csdn.net/xingyeyongheng/article/details/20402603
/*分析:先求出点u,v的最近公共祖先f,然后求u->f->v的利润最大值maxval
对于这个maxval可能有三种情况:
1:maxval是u->f的maxval
2:maxval是f->v的maxval
3:maxval是u->f的最小w[i]减去f->v的最大w[i]
分析到这很明显需要设置4个变量来求maxval:
up[u]表示u->f的最大maxval
down[u]表示f->u的最大maxval
maxw[u]表示u-f的最大w[i]
minw[u]表示u-f的最小w[i]
所以maxval=max(max(up[u],down[v]),maxw[v]-minw[u]);
现在问题就是如何快速的求出这四个变量,在这里我们可以对u,v的LCA(u,v)进行分类解决
对于LCA(u,v)是f的询问全部求出,然后再求LCA(u,v)是f的父亲的询问
这样当我们求LCA(u,v)是f的父亲的询问的时候就可以借用已经求出的LCA(u,v)是f的询问
的结果,这样就不用反复去求u->f的那四个变量值,u->father[f]也能快速求出
这个变化主要在寻找father[v]这个过程中进行,具体看代码
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std; const int MAX=+;
int n,m,size;
int uu[MAX],vv[MAX],ww[MAX],sum[MAX];
int up[MAX],down[MAX],maxw[MAX],minw[MAX],father[MAX];
int head[MAX],head2[MAX],head3[MAX];
bool mark[MAX]; struct Edge{
int v,id,next;
Edge(){}
Edge(int V,int ID,int NEXT):v(V),id(ID),next(NEXT){}
}edge[MAX*],edge2[MAX*],edge3[MAX*]; void Init(int num){
for(int i=;i<=num;++i)head[i]=head2[i]=head3[i]=-,mark[i]=false;
size=;
} void InsertEdge(int u,int v,int id){
edge[size]=Edge(v,id,head[u]);
head[u]=size++;
} void InsertEdge2(int u,int v,int id){
edge2[size]=Edge(v,id,head2[u]);
head2[u]=size++;
} void InsertEdge3(int u,int v,int id){
edge3[size]=Edge(v,id,head3[u]);
head3[u]=size++;
} int findset(int v){
if(v == father[v])return father[v];
int fa=father[v];
father[v]=findset(father[v]);
up[v]=max(max(up[v],up[fa]),maxw[fa]-minw[v]);
down[v]=max(max(down[v],down[fa]),maxw[v]-minw[fa]);
maxw[v]=max(maxw[v],maxw[fa]);
minw[v]=min(minw[v],minw[fa]);
return father[v];
} void LCA(int u){
mark[u]=true;
father[u]=u;
for(int i=head2[u];i != -;i=edge2[i].next){//对LCA(u,v)进行分类
int v=edge2[i].v,id=edge2[i].id;
if(!mark[v])continue;
int f=findset(v);
InsertEdge3(f,v,id);
}
for(int i=head[u];i != -;i=edge[i].next){
int v=edge[i].v;
if(mark[v])continue;
LCA(v);
father[v]=u;
}
for(int i=head3[u];i != -;i=edge3[i].next){
int id=edge3[i].id;
findset(uu[id]);
findset(vv[id]);
sum[id]=max(max(up[uu[id]],down[vv[id]]),maxw[vv[id]]-minw[uu[id]]);
}
} int main(){
int u,v;
while(~scanf("%d",&n)){
Init(n);
for(int i=;i<=n;++i){
scanf("%d",ww+i);
up[i]=down[i]=;
maxw[i]=minw[i]=ww[i];
}
for(int i=;i<n;++i){
scanf("%d%d",&u,&v);
InsertEdge(u,v,i);
InsertEdge(v,u,i);
}
size=;
scanf("%d",&m);
for(int i=;i<m;++i){
scanf("%d%d",&uu[i],&vv[i]);
InsertEdge2(uu[i],vv[i],i);
InsertEdge2(vv[i],uu[i],i);
}
size=;
LCA();
for(int i=;i<m;++i)printf("%d\n",sum[i]);
}
return ;
}
POJ 3728 The merchant (树形DP+LCA)的更多相关文章
- poj 2324 Anniversary party(树形DP)
/*poj 2324 Anniversary party(树形DP) ---用dp[i][1]表示以i为根的子树节点i要去的最大欢乐值,用dp[i][0]表示以i为根节点的子树i不去时的最大欢乐值, ...
- poj3417 Network 树形Dp+LCA
题意:给定一棵n个节点的树,然后在给定m条边,去掉m条边中的一条和原树中的一条边,使得树至少分为两部分,问有多少种方案. 神题,一点也想不到做法, 首先要分析出加入一条边之后会形成环,形成环的话,如果 ...
- hdu_5293_Tree chain problem(DFS序+树形DP+LCA)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=5293 被这题打蹦了,看着题解写的,很是爆炸,确实想不到,我用的DFS序+LCA+树形DP,当然也可以写 ...
- POJ 3162.Walking Race 树形dp 树的直径
Walking Race Time Limit: 10000MS Memory Limit: 131072K Total Submissions: 4123 Accepted: 1029 Ca ...
- POJ 1655.Balancing Act 树形dp 树的重心
Balancing Act Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14550 Accepted: 6173 De ...
- POJ 2342 - Anniversary party - [树形DP]
题目链接:http://poj.org/problem?id=2342 Description There is going to be a party to celebrate the 80-th ...
- POJ - 3162 Walking Race 树形dp 单调队列
POJ - 3162Walking Race 题目大意:有n个训练点,第i天就选择第i个训练点为起点跑到最远距离的点,然后连续的几天里如果最远距离的最大值和最小值的差距不超过m就可以作为观测区间,问这 ...
- POJ 2486 Apple Tree(树形DP)
题目链接 树形DP很弱啊,开始看题,觉得貌似挺简单的,然后发现貌似还可以往回走...然后就不知道怎么做了... 看看了题解http://www.cnblogs.com/wuyiqi/archive/2 ...
- POJ 3162 Walking Race 树形DP+线段树
给出一棵树,编号为1~n,给出数m 漂亮mm连续n天锻炼身体,每天会以节点i为起点,走到离i最远距离的节点 走了n天之后,mm想到知道自己这n天的锻炼效果 于是mm把这n天每一天走的距离记录在一起,成 ...
- POJ 1849 - Two - [DFS][树形DP]
Time Limit: 1000MS Memory Limit: 30000K Description The city consists of intersections and streets t ...
随机推荐
- 阿里云SLB产品HTTP、HTTPS、UDP协议使用
1.http协议测试 第一步:添加http监听服务,前端端口为8080,后端端口为80,健康检查中检查端口为后端端口80: 第二步:在绑定的服务器上安装服务,步骤如下 centos系统中启动http协 ...
- 前端 CSS的选择器 伪类选择器
伪类选择器 常用的几种伪类选择器. 伪类选择器一般会用在超链接a标签中 没有访问的超链接a标签样式: a:link { color: blue; } <!DOCTYPE html> < ...
- JavaSE编码试题强化练习3
1.给20块钱买可乐,每瓶可乐3块钱,喝完之后退瓶子可以换回1块钱,问最多可以喝到多少瓶可乐. public class TestCirculation { public static void ma ...
- 循环结构 :while
循环结构 :while 循环四要素: 1.初始化条件 2.循环条件 3.循环体 4.迭代条件 格式: 1.初始化条件 while(2.循环条件){ 3.循环体 4.迭代条件 } public clas ...
- stl应用
http://codeforces.com/problemset/problem/1154/E E. Two Teams time limit per test 2 seconds memory li ...
- Gradle打包问题Deprecated Gradle features were used in this build, making it incompatible with Gradle 5.0
前言 使用gradle打包react native的时候,出现了如下报错,下面和大家说一下解决的具体办法 Deprecated Gradle features were used in this bu ...
- vue数据响应式的一些注意点
有关对象属性值不触发视图更新的情况: Vue 不能检测到对象属性的添加或删除,由于 Vue 会在初始化实例时对属性执行 getter/setter 转化过程,所以属性必须在 data 对象上存在才能让 ...
- Linux awk抓取IP的两种方式
ip addr show ens33 | awk -F "[ /]+" '/inet /{print $3}' 或 ifconfig ens33 | awk -F "[ ...
- 《快学scala》读书笔记(1)
第一章 基础 1.安装scala解释器 (1)scala-2.12.1.msi (2)配置环境变量:SCALA_HOME = D:\Program Files\scala Path= %SCALA_H ...
- NodeJS、npm安装步骤和配置(windows版本)
https://jingyan.baidu.com/article/48b37f8dd141b41a646488bc.html 上面这个链接很详细了,怕它没了自己记一遍.我的简洁一点. 1. 打开no ...