KNN算法项目实战——改进约会网站的配对效果
- 不喜欢的人
- 魅力一般的人
- 极具魅力的人
- 每年获得的飞行常客里程数
- 玩视频游戏所消耗时间百分比
- 每周消费的冰淇淋公升数
#-*- coding:utf-8 -*- import matplotlib.lines as mlines
import matplotlib.pyplot as plt
import numpy as np
import matplotlib as mpl
import operator '''
#准备数据,从文本文件中解析数据
'''
def file2matrix(filename):
#打开文件
with open(filename,'r') as fr:
# 读取文件所有内容
arrayOLines = fr.readlines()
# 得到文件行数
numberOfLines = len(arrayOLines)
# 返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
returnMat = np.zeros((numberOfLines, 3))
# 返回的分类标签向量
classLabelVector = []
# 行的索引值
index = 0
for line in arrayOLines:
# s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')
line = line.strip()
# 使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
listFromLine = line.split('\t')
# 将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
returnMat[index, :] = listFromLine[0:3]
# 根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
if listFromLine[-1] == 'didntLike':
classLabelVector.append(1)
elif listFromLine[-1] == 'smallDoses':
classLabelVector.append(2)
elif listFromLine[-1] == 'largeDoses':
classLabelVector.append(3)
index += 1
return returnMat, classLabelVector '''
#分析数据,数据可视化,使用Matplotlib创建散点图
'''
def showdatas(datingDataMat, datingLabels):
#设置汉字格式
# sans-serif就是无衬线字体,是一种通用字体族。
# 常见的无衬线字体有 Trebuchet MS, Tahoma, Verdana, Arial, Helvetica, 中文的幼圆、隶书等等
mpl.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体 SimHei为黑体
mpl.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
#将fig画布分隔成2行2列,不共享x轴和y轴,fig画布的大小为(13,8)
#当nrow=2,nclos=2时,代表fig画布被分为四个区域,axs[0][0]表示第一行第一个区域
fig, axs = plt.subplots(nrows=2, ncols=2,sharex=False, sharey=False, figsize=(13,9)) LabelsColors = []
for i in datingLabels:
if i == 1:
LabelsColors.append('black')
if i == 2:
LabelsColors.append('orange')
if i == 3:
LabelsColors.append('red') #画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第二列(玩游戏)数据画散点数据,散点大小为15,透明度为0.5
axs[0][0].scatter(x=datingDataMat[:,0], y=datingDataMat[:,1], color=LabelsColors,s=15, alpha=.5)
#设置标题,x轴label,y轴label
axs0_title_text = axs[0][0].set_title('每年获得的飞行常客里程数与玩视频游戏所消耗时间占比')
axs0_xlabel_text = axs[0][0].set_xlabel('每年获得的飞行常客里程数')
axs0_ylabel_text = axs[0][0].set_ylabel('玩视频游戏所消耗时间占')
plt.setp(axs0_title_text, size=12, weight='bold', color='red')
plt.setp(axs0_xlabel_text, size=10, weight='bold', color='black')
plt.setp(axs0_ylabel_text, size=10, weight='bold', color='black') #画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5
axs[0][1].scatter(x=datingDataMat[:,0], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)
#设置标题,x轴label,y轴label
axs1_title_text = axs[0][1].set_title('每年获得的飞行常客里程数与每周消费的冰激淋公升数',)
axs1_xlabel_text = axs[0][1].set_xlabel('每年获得的飞行常客里程数')
axs1_ylabel_text = axs[0][1].set_ylabel('每周消费的冰激淋公升数')
plt.setp(axs1_title_text, size=12, weight='bold', color='red')
plt.setp(axs1_xlabel_text, size=10, weight='bold', color='black')
plt.setp(axs1_ylabel_text, size=10, weight='bold', color='black') #画出散点图,以datingDataMat矩阵的第二(玩游戏)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5
axs[1][0].scatter(x=datingDataMat[:,1], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)
#设置标题,x轴label,y轴label
axs2_title_text = axs[1][0].set_title('玩视频游戏所消耗时间占比与每周消费的冰激淋公升数')
axs2_xlabel_text = axs[1][0].set_xlabel('玩视频游戏所消耗时间占比')
axs2_ylabel_text = axs[1][0].set_ylabel('每周消费的冰激淋公升数')
plt.setp(axs2_title_text, size=12, weight='bold', color='red')
plt.setp(axs2_xlabel_text, size=10, weight='bold', color='black')
plt.setp(axs2_ylabel_text, size=10, weight='bold', color='black') #设置图例
didntLike = mlines.Line2D([], [], color='black', marker='.', markersize=6, label='不喜欢')
smallDoses = mlines.Line2D([], [], color='orange', marker='.',markersize=6, label='魅力一般')
largeDoses = mlines.Line2D([], [], color='red', marker='.',markersize=6, label='极具魅力')
#添加图例
axs[0][0].legend(handles=[didntLike,smallDoses,largeDoses])
axs[0][1].legend(handles=[didntLike,smallDoses,largeDoses])
axs[1][0].legend(handles=[didntLike,smallDoses,largeDoses])
#显示图片
plt.show() '''
#准备数据,数据归一化处理
'''
def autoNorm(dataSet):
#获得每列数据的最小值和最大值
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
#最大值和最小值的范围
ranges = maxVals - minVals
#shape(dataSet)返回dataSet的矩阵行列数
#normDataSet = np.zeros(np.shape(dataSet))
#返回dataSet的行数
m = dataSet.shape[0]
#原始值减去最小值
normDataSet = dataSet - np.tile(minVals, (m, 1))
#除以最大和最小值的差,得到归一化数据
normDataSet = normDataSet / np.tile(ranges, (m, 1))
#返回归一化数据结果,数据范围,最小值
return normDataSet, ranges, minVals '''
KNN算法分类器
# inX - 用于分类的数据(测试集)
# dataSet - 用于训练的数据(训练集)
# labes - 训练数据的分类标签
# k - kNN算法参数,选择距离最小的k个点
# sortedClassCount[0][0] - 分类结果
'''
def classify0(inX, dataSet, labels, k):
#numpy函数shape[0]返回dataSet的行数
dataSetSize = dataSet.shape[0]
#在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)
diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
#二维特征相减后平方
sqDiffMat = diffMat**2
#sum()所有元素相加,sum(0)列相加,sum(1)行相加
sqDistances = sqDiffMat.sum(axis=1)
#开方,计算出距离
distances = sqDistances**0.5
#返回distances中元素从小到大排序后的索引值
sortedDistIndices = distances.argsort()
#定一个记录类别次数的字典
classCount = {}
for i in range(k):
#取出前k个元素的类别
voteIlabel = labels[sortedDistIndices[i]]
#dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
#计算类别次数
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
#python3中用items()替换python2中的iteritems()
#key=operator.itemgetter(1)根据字典的值进行排序
#key=operator.itemgetter(0)根据字典的键进行排序
#reverse降序排序字典
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
#返回次数最多的类别,即所要分类的类别
return sortedClassCount[0][0] '''
#测试算法,计算分类器的准确率,验证分类器
'''
def datingClassTest():
#打开的文件名
filename = "datingTestSet.txt"
#将返回的特征矩阵和分类向量分别存储到datingDataMat和datingLabels中
datingDataMat, datingLabels = file2matrix(filename)
#取所有数据的百分之十
hoRatio = 0.10
#数据归一化,返回归一化后的矩阵,数据范围,数据最小值
normMat, ranges, minVals = autoNorm(datingDataMat)
#获得normMat的行数
m = normMat.shape[0]
#百分之十的测试数据的个数
numTestVecs = int(m * hoRatio)
#分类错误计数
errorCount = 0.0 for i in range(numTestVecs):
#前numTestVecs个数据作为测试集,后m-numTestVecs个数据作为训练集
classifierResult = classify0(normMat[i,:], normMat[numTestVecs:m,:],datingLabels[numTestVecs:m], 4)
print("分类结果:%d\t真实类别:%d" % (classifierResult, datingLabels[i]))
if classifierResult != datingLabels[i]:
errorCount += 1.0
print("错误率:%f%%" %(errorCount/float(numTestVecs)*100)) '''
#使用算法,构建完整可用系统
'''
def classifyPerson():
#输出结果
resultList = ['不喜欢','有些喜欢','非常喜欢']
#三维特征用户输入
ffMiles = float(input("每年获得的飞行常客里程数:"))
precentTats = float(input("玩视频游戏所耗时间百分比:"))
iceCream = float(input("每周消费的冰激淋公升数:"))
#打开的文件名
filename = "datingTestSet.txt"
#打开并处理数 据
datingDataMat, datingLabels = file2matrix(filename)
#训练集归一化
normMat, ranges, minVals = autoNorm(datingDataMat)
#生成NumPy数组,测试集
inArr = np.array([ffMiles,precentTats, iceCream])
#测试集归一化
norminArr = (inArr - minVals) / ranges
#返回分类结果
classifierResult = classify0(norminArr, normMat, datingLabels, 3)
#打印结果
print("你可能%s这个人" % (resultList[classifierResult-1])) '''
#主函数,测试以上各个步骤,并输出各个步骤的结果
'''
if __name__ == '__main__':
#打开的文件名
filename = "datingTestSet.txt"
#打开并处理数据
datingDataMat, datingLabels = file2matrix(filename)
#数据可视化
showdatas(datingDataMat, datingLabels)
#验证分类器
datingClassTest()
#使用分类器
classifyPerson()
KNN算法项目实战——改进约会网站的配对效果的更多相关文章
- 机器学习实战1-2.1 KNN改进约会网站的配对效果 datingTestSet2.txt 下载方法
今天读<机器学习实战>读到了使用k-临近算法改进约会网站的配对效果,道理我都懂,但是看到代码里面的数据样本集 datingTestSet2.txt 有点懵,这个样本集在哪里,只给了我一个文 ...
- kNN分类算法实例1:用kNN改进约会网站的配对效果
目录 实战内容 用sklearn自带库实现kNN算法分类 将内含非数值型的txt文件转化为csv文件 用sns.lmplot绘图反映几个特征之间的关系 参考资料 @ 实战内容 海伦女士一直使用在线约会 ...
- k-近邻(KNN)算法改进约会网站的配对效果[Python]
使用Python实现k-近邻算法的一般流程为: 1.收集数据:提供文本文件 2.准备数据:使用Python解析文本文件,预处理 3.分析数据:可视化处理 4.训练算法:此步骤不适用与k——近邻算法 5 ...
- 《机器学习实战》之k-近邻算法(改进约会网站的配对效果)
示例背景: 我的朋友海伦一直使用在线约会网站寻找合适自己的约会对象.尽管约会网站会推荐不同的人选,但她并不是喜欢每一个人.经过一番总结,她发现曾交往过三种类型的人: (1)不喜欢的人: (2)魅力一般 ...
- 【Machine Learning in Action --2】K-近邻算法改进约会网站的配对效果
摘自:<机器学习实战>,用python编写的(需要matplotlib和numpy库) 海伦一直使用在线约会网站寻找合适自己的约会对象.尽管约会网站会推荐不同的人选,但她没有从中找到喜欢的 ...
- 机器学习读书笔记(二)使用k-近邻算法改进约会网站的配对效果
一.背景 海伦女士一直使用在线约会网站寻找适合自己的约会对象.尽管约会网站会推荐不同的任选,但她并不是喜欢每一个人.经过一番总结,她发现自己交往过的人可以进行如下分类 不喜欢的人 魅力一般的人 极具魅 ...
- 使用K近邻算法改进约会网站的配对效果
1 定义数据集导入函数 import numpy as np """ 函数说明:打开并解析文件,对数据进行分类:1 代表不喜欢,2 代表魅力一般,3 代表极具魅力 Par ...
- 吴裕雄--天生自然python机器学习:使用K-近邻算法改进约会网站的配对效果
在约会网站使用K-近邻算法 准备数据:从文本文件中解析数据 海伦收集约会数据巳经有了一段时间,她把这些数据存放在文本文件(1如1^及抓 比加 中,每 个样本数据占据一行,总共有1000行.海伦的样本主 ...
- 使用k-近邻算法改进约会网站的配对效果
---恢复内容开始--- < Machine Learning 机器学习实战>的确是一本学习python,掌握数据相关技能的,不可多得的好书!! 最近邻算法源码如下,给有需要的入门者学习, ...
随机推荐
- WWW基本概念
1.Internet 2.Intranet 3.万维网 注:万维网不等同于因特网,它只是因特网的一项服务. 4.TCP/IP 5.HTTP 注:HTTP是运行在应用层的一项服务. 注:服务器在没有用户 ...
- ORB an efficient alternative to SIFT or SURF
AbstractFeature matching is at the base of many computer vision problems, such as object recognition ...
- Bazinga
Bazinga Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Sub ...
- Oracle update或alter表被锁住的问题
\\ 查询被锁的对象.来源.sid和serial select object_name, machine, s.sid, s.serial# from v$locked_object l, dba_o ...
- Java 中如何使用clone()方法克隆对象?
java为什么要 对象克隆: 在程序开发时,有时可能会遇到以下情况:已经存在一个对象A,现在需要一个与A对象完全相同的B 对象,并对B 对象的属性值进行修改,但是A 对象原有的属性值不能改变.这时,如 ...
- oralce创建dblink
CREATE DATABASE LINK dblinkName CONNECT TO dbLoginName IDENTIFIED BY dbLoginPwd USING '(DESCRIPTION= ...
- 在bash脚本的for i in编写中将点号``写成单引号‘’或者双引号“”会有什么后果?
编写一个测试脚本: 输入启动命令:https://blog.csdn.net/zhoucheng05_13/article/details/test.sh,结果报错 使用的是root用户,但是仍然提示 ...
- 大牛整理最全Python零基础入门学习资料
大牛整理最全Python零基础入门学习资料 发布时间:『 2017-11-12 11:56 』 帖子类别:『人工智能』 阅读次数:3504 (本文『大牛整理最全Python零基础入门学习资料 ...
- MySQL高可用架构之MySQL5.7.19 PXC
CentOS7.3下Percona-XtraDB-Cluster-5.7.19集群部署PXC三节点安装:node1:10.10.10.11 node2:10.10.10.12node3:10.10.1 ...
- 纯CSS3写一个立方体并在鼠标悬停的时候无限循环旋转