Dice

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 180    Accepted Submission(s): 121 Special Judge

Problem Description
You have a dice with m faces, each face contains a distinct number. We assume when we tossing the dice, each face will occur randomly and uniformly.
Now you have T query to answer, each query has one of the following form: 0 m n: ask for the expected number of tosses until the last n times results are
all same. 1 m n: ask for the expected number of tosses until the last n consecutive results are pairwise different.
 
Input
The first line contains a number T.(1≤T≤100) The next T line each line contains a query as we mentioned above. (1≤m,n≤106) For second kind query,
we guarantee n≤m. And in order to avoid potential precision issue, we guarantee the result for our query will not exceeding 109 in this problem.
 
Output
For each query, output the corresponding result. The answer will be considered correct if the absolute or relative error doesn't exceed 10-6.
 
Sample Input
6
0 6 1
0 6 3
0 6 5
1 6 2
1 6 4
1 6 6
10
1 4534 25
1 1232 24
1 3213 15
1 4343 24
1 4343 9
1 65467 123
1 43434 100
1 34344 9
1 10001 15
1 1000000 2000
 
 
Sample Output
1.000000000
43.000000000
1555.000000000
2.200000000
7.600000000
83.200000000
25.586315824
26.015990037
15.176341160
24.541045769
9.027721917
127.908330426
103.975455253
9.003495515
15.056204472
4731.706620396
 
Source

题意:

输入 :op,m,n;

op=0:表示最后n次骰子的面都是一样的!!

op=1:表示最后n次骰子的面是互不相同的!!

对于op=0:对于i状态(即最后i次骰子的面都是一样的,比如是xx。。xx),然后接下来我可以有1/m的概率掷到x,即有1/m的概率可以转移到i+1这个状态

  同时,若我可以有1-1/m的概率掷到非x,比如序列变为(xx。。xxy),即有1-1/m的概率可以转移到i=1这个状态;

  所以状态转移为:dp[i]=1/m*dp[i+1]+(1-1/m)*dp[1]+1;  (__dp[n]=0__);

  然后就是n-1个方程递推下去求出dp[1]即可;

对于op=1:对于i状态(即最后i次骰子的面都是互不相同的,比如是xy。。ab),然后接下来我可以有1-i/m的概率掷到新的元素,比如序列变为(xy。。abc),

  即有1-i/m的概率可以转移到i+1这个状态

  同时,我各有可以有1/m的概率分别转移到(i,i-1,i-2,。。,1)这些状态,比如序列变为(xy。。abx,即转为i状态!!!),

  所以状态转移为:dp[i]=(1-i/m)*dp[i+1]+1/m*(dp[i]+dp[i-1]+..+dp[1])+1;  (__dp[n]=0__);

  然后就是n-1个方程递推下求解啦(这别要细心奥!!);

 #include<stdio.h>

 int m,n;
void DP1()
{
int i;
double ans,a,b;
a=1.0*(m-)/m;
b=1.0;
for(i=;i<=n-;i++)
{
a=a*1.0/m+1.0*(m-)/m;
b=b/m+;
}
if(n==)ans=1.0;
else ans=b/(-a)+;//b/(1-a)为dp[1];
printf("%.9f\n",ans);
} void DP2()
{
int i;
double ans=1.0,tmp=1.0;
for(i=;i<=n-;i++)//找到递推关系求解!!
{
tmp=tmp*m/(m-i);
ans+=tmp;
}
printf("%.9f\n",ans);
} int main()
{
int T,i,op; while(~scanf("%d",&T))
{
while(T--)
{
scanf("%d%d%d",&op,&m,&n);
if(op==)
DP1();
else
DP2();
} }
}

hdu 4625 Dice(概率DP)的更多相关文章

  1. HDU 4599 Dice (概率DP+数学+快速幂)

    题意:给定三个表达式,问你求出最小的m1,m2,满足G(m1) >= F(n), G(m2) >= G(n). 析:这个题是一个概率DP,但是并没有那么简单,运算过程很麻烦. 先分析F(n ...

  2. hdu 4599 Dice 概率DP

    思路: 1.求f[n];dp[i]表示i个连续相同时的期望 则 dp[0]=1+dp[1]     dp[1]=1+(5dp[1]+dp[2])/6     ……     dp[i]=1+(5dp[1 ...

  3. hdu 4652 Dice 概率DP

    思路: dp[i]表示当前在已经投掷出i个不相同/相同这个状态时期望还需要投掷多少次 对于第一种情况有: dp[0] = 1+dp[1] dp[1] = 1+((m-1)*dp[1]+dp[2])/m ...

  4. HDU 3853LOOPS(简单概率DP)

    HDU 3853    LOOPS 题目大意是说人现在在1,1,需要走到N,N,每次有p1的可能在元位置不变,p2的可能走到右边一格,有p3的可能走到下面一格,问从起点走到终点的期望值 这是弱菜做的第 ...

  5. Throwing Dice(概率dp)

    C - Throwing Dice Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Lig ...

  6. HDU - 1099 - Lottery - 概率dp

    http://acm.hdu.edu.cn/showproblem.php?pid=1099 最最简单的概率dp,完全是等概率转移. 设dp[i]为已有i张票,还需要抽几次才能集齐的期望. 那么dp[ ...

  7. HDU 4405 【概率dp】

    题意: 飞行棋,从0出发要求到n或者大于n的步数的期望.每一步可以投一下筛子,前进相应的步数,筛子是常见的6面筛子. 但是有些地方可以从a飞到大于a的b,并且保证每个a只能对应一个b,而且可以连续飞, ...

  8. HDU 4576 Robot(概率dp)

    题目 /*********************复制来的大致题意********************** 有N个数字,M个操作, 区间L, R. 然后问经过M个操作后落在[L, R]的概率. * ...

  9. [HDU 4089]Activation[概率DP]

    题意: 有n个人排队等着在官网上激活游戏.Tomato排在第m个. 对于队列中的第一个人.有以下情况: 1.激活失败,留在队列中等待下一次激活(概率为p1) 2.失去连接,出队列,然后排在队列的最后( ...

  10. hdu 3853 LOOPS 概率DP

    简单的概率DP入门题 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include ...

随机推荐

  1. android 启动默认的邮件客户端,多附件的问题

    目前开发的app中需要发送邮件,所以需要调用android默认的邮件客户端,并需要添加多个邮件附件,我该通过哪个组件调用默认的客户端?用什么组件来支持多个附件的电子邮件? 是通过下面的哪一个?(Int ...

  2. SpringCloud 教程 (四) docker部署spring cloud项目

    一.docker简介 Docker是一个开源的引擎,可以轻松的为任何应用创建一个轻量级的.可移植的.自给自足的容器.开发者在笔记本上编译测试通过的容器可以批量地在生产环境中部署,包括VMs(虚拟机). ...

  3. 手把手教你做echarts图表系列之组织结构图

    在实际项目中使用echarts越来越多了,今天从一个组织结构图开始,手把手教大家开发echarts图表. 公司里的组织结构图如下: 可以参考echarts入门教程:http://echarts.bai ...

  4. mui初级入门教程(七)— 基于native.js的文件系统管理功能实现

    文章来源:小青年原创发布时间:2016-08-01关键词:mui,nativejs,android转载需标注本文原始地址: http://zhaomenghuan.github.io... 前言 这段 ...

  5. lists.newarraylist()和new arraylist() 区别

    转自 https://blog.csdn.net/qq_2300688967/article/details/79490345 lists.newarraylist(): List<String ...

  6. ECharts插件介绍(图表库)

    ECharts是一个非常好用的插件,用于进行 树状图,折线图,饼图,地图等等,系列视图的绘制.(详情看官网) 了解: AMD:模块化开发方式: 引入文件后:console.log(echarts) / ...

  7. Fragment 基础使用及重叠问题

    一 基本使用 Fragment依附于Activity使用,方面我们在一个页面里面切换显示多屏内容. Activity管理Fragment有两种方式,通过FragmentTransacation这个类来 ...

  8. centos修改时区,同步时间

    查看当前系统时区 ls -la /etc/localtime 查看支持的时区 timedatectl list-timezones # 查看所有时区 timedatectl list-timezone ...

  9. django框架ORM数据库

    字段类型 选项 null是数据库范畴的概念,blank是表单验证范畴的 外键 在设置外键时,需要通过on_delete选项指明主表删除数据时,对于外键引用表数据如何处理,在django.db.mode ...

  10. 如何快速查找到多个字典中的公共键(Key)---Python数据结构与算法相关问题与解决技巧

    如何快速查找到多个字典中的公共键(Key)-?   实际案例: 西班牙足球甲级联赛,每轮球员进球统计: 第1轮: { '苏亚雷斯':1,'梅西':2,'本泽马':1,...} 第2轮: { '苏亚雷斯 ...