You are given two huge binary integer numbers aa and bb of lengths nn and mmrespectively. You will repeat the following process: if b>0b>0, then add to the answer the value a & ba & b and divide bb by 22 rounding down (i.e. remove the last digit of bb), and repeat the process again, otherwise stop the process.

The value a & ba & b means bitwise AND of aa and bb. Your task is to calculate the answer modulo 998244353998244353.

Note that you should add the value a & ba & b to the answer in decimal notation, not in binary. So your task is to calculate the answer in decimal notation. For example, if a=10102 (1010)a=10102 (1010) and b=10002 (810)b=10002 (810), then the value a & ba & b will be equal to 88, not to 10001000.

Input

The first line of the input contains two integers nn and mm (1≤n,m≤2⋅1051≤n,m≤2⋅105) — the length of aa and the length of bb correspondingly.

The second line of the input contains one huge integer aa. It is guaranteed that this number consists of exactly nn zeroes and ones and the first digit is always 11.

The third line of the input contains one huge integer bb. It is guaranteed that this number consists of exactly mm zeroes and ones and the first digit is always 11.

Output

Print the answer to this problem in decimal notation modulo 998244353998244353.

Examples

Input
4 4
1010
1101
Output
12
Input
4 5
1001
10101
Output
11

Note

The algorithm for the first example:

  1. add to the answer 10102 & 11012=10002=81010102 & 11012=10002=810 and set b:=110b:=110;
  2. add to the answer 10102 & 1102=102=21010102 & 1102=102=210 and set b:=11b:=11;
  3. add to the answer 10102 & 112=102=21010102 & 112=102=210 and set b:=1b:=1;
  4. add to the answer 10102 & 12=02=01010102 & 12=02=010 and set b:=0b:=0.

So the answer is 8+2+2+0=128+2+2+0=12.

The algorithm for the second example:

  1. add to the answer 10012 & 101012=12=11010012 & 101012=12=110 and set b:=1010b:=1010;
  2. add to the answer 10012 & 10102=10002=81010012 & 10102=10002=810 and set b:=101b:=101;
  3. add to the answer 10012 & 1012=12=11010012 & 1012=12=110 and set b:=10b:=10;
  4. add to the answer 10012 & 102=02=01010012 & 102=02=010 and set b:=1b:=1;
  5. add to the answer 10012 & 12=12=11010012 & 12=12=110 and set b:=0b:=0.

So the answer is 1+8+1+0+1=111+8+1+0+1=11.

题意:

给你两个二进制的字符串a和b。(很长)

让你进行一下操作。

把答案加上 a&b的值。然后b右移一位。

上述操作直至b==0

求最后对998244353取模后的的答案。

思路:

我们来看一下样例1。

4 4
1010
1101 我们看b,1101 从最后一位看起,最后一位的1,只能&上一次a的最后一位,然后就被消除掉了(右移)
而倒数第二位的0,无论&上多少个数(不管是0还是1) 都不会对答案做出贡献。
继续看倒数第三位的1,他会&上a中的后三位才会被消除掉,会&上a中倒数第2位的1,那么会对答案产生2的贡献。
再看b的第一位的1,他会&上a中的后四位才会被消除掉,&上a中倒数第2个的1和倒数第4位的1,会对答案产生8+2的贡献,
加起来答案就是12。
不知道大家有没有发现什么规律?
b中每一位1都会&上a中对应位置以及后面的所有位。并且b这一位的贡献值就是a中这一位以及之后的数组成的二进制数的十进制数值大小。
那么我们不妨对a进行通过快速幂取模来求出a中每一位数值的前缀和,然后b中每一位1直接去加上那么数值就是贡献。
又因为a和b可能不一样长,我们为了方便把a和b翻转后再计算。
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=;while(b){if(b%)ans=ans*a%MOD;a=a*a%MOD;b/=;}return ans;}
inline void getInt(int* p);
const int maxn=;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
//string a,b;
int n,m;
char a[maxn];
char b[maxn];
const ll mod=998244353ll;
ll sum[maxn];
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
gbtb;
cin>>n>>m;
cin>>a>>b;
ll x=m-n;
reverse(a,a+n);
reverse(b,b+m); if(a[]=='')
{
sum[]=1ll;
}
for(ll i=1ll;i<max(n,m);++i)
{
if(a[i]=='')
{
sum[i]=sum[i-]+powmod(2ll,i,mod);
sum[i]=(sum[i]+mod)%mod;
}else
{
sum[i]=sum[i-];
}
}
ll ans=0ll;
for(ll i=0ll;i<max(n,m);++i)
{
if(b[i]=='')
{
ans+=sum[i];
ans=(ans+mod)%mod;
}
}
cout<<ans<<endl; return ;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '');
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * - ch + '';
}
}
else {
*p = ch - '';
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * + ch - '';
}
}
}

Binary Numbers AND Sum CodeForces - 1066E (前缀和)的更多相关文章

  1. Codeforces Round #515 (Div. 3) E. Binary Numbers AND Sum

    E. Binary Numbers AND Sum 题目链接:https://codeforces.com/contest/1066/problem/E 题意: 给出两个用二进制表示的数,然后将第二个 ...

  2. Codeforces Round #515 (Div. 3) E. Binary Numbers AND Sum (二进制,前缀和)

    题意:有两个\(01\)字符串\(a\)和\(b\),每次让\(a\)和\(b\)进行与运算,将值贡献给答案,然后将\(b\)右移一位,直到\(b=0\). 题解:因为\(a\)不变,而\(b\)每次 ...

  3. E. Binary Numbers AND Sum

    链接 [http://codeforces.com/contest/1066/problem/E] 题意 给你长度分别为n,m的二进制串,当b>0时,对a,b,&运算,然后b右移一位,把 ...

  4. CF1066E Binary Numbers AND Sum

    思路: 模拟.实现: #include <iostream> using namespace std; ; ], b[]; ]; int main() { int n, m; while ...

  5. codefores 1066 E. Binary Numbers AND Sum

    这个题吧 你画一下就知道了 就拿这个例子来讲 4 5100110101 对于b串的话第5位只会经过a串的第4位,b串的第4位会经过a串的第3位和第4位.....b串的第1和第2位会经过a串的每一位 由 ...

  6. 【Leetcode_easy】1022. Sum of Root To Leaf Binary Numbers

    problem 1022. Sum of Root To Leaf Binary Numbers 参考 1. Leetcode_easy_1022. Sum of Root To Leaf Binar ...

  7. LeetCode 1022. 从根到叶的二进制数之和(Sum of Root To Leaf Binary Numbers)

    1022. 从根到叶的二进制数之和 1022. Sum of Root To Leaf Binary Numbers 题目描述 Given a binary tree, each node has v ...

  8. HDU-1390 Binary Numbers

    http://acm.hdu.edu.cn/showproblem.php?pid=1390 Binary Numbers Time Limit: 2000/1000 MS (Java/Others) ...

  9. [LeetCode#110, 112, 113]Balanced Binary Tree, Path Sum, Path Sum II

    Problem 1 [Balanced Binary Tree] Given a binary tree, determine if it is height-balanced. For this p ...

随机推荐

  1. 方法二:Excel 2016 VBA工程密码破解

    将你要破解的Excel文件关闭,切记一定要关闭呀!然后新建一个Excel文件 打开新建的这个Excel,按下alt+F11,打开vb界面,新建一个模块,如图所示 将代码复制到这个模块中,代码如下:Pr ...

  2. android中常用的注解说明

    1.@Nullable  作用于函数参数或者返回值,标记参数或者返回值可以为空. 2,@NonMull 作用于函数参数或者返回值,标记参数或者返回值不可以为空. 3.@LayoutRes 标记整数值a ...

  3. internetwork 与 the Internet的区别

    internetwork 表示:互连网络 the Internet 表示:因特网

  4. python 引流

    Python给抖音自动点赞和评论,实现自动化运营! 都说抖音有毒,一刷就停不下来了.看来抖音这款产品紧紧抓住了人们内心深处的某些需求.当然今天不是来探讨抖音这款产品的啊.今天我们来学习如何用 Pyth ...

  5. 阶段3 2.Spring_10.Spring中事务控制_1 基于XML的AOP实现事务控制

    新建项目 首先把依赖复制进来 aop必须引入.aspectjweaver 复制src下的所有内容 复制到我们的新项目里面 factory文件夹删掉 删除后测试类必然就报错 配置文件 beanFacto ...

  6. git 如何把master分支代码合并到自己的分支

    master分支的代码领先自己的分支,git 如何把master分支代码合并到自己的分支 1.首先切换到主分支 git checkout master 2.使用git pull 把领先的主分支代码pu ...

  7. [Amazon] Program for Fibonacci numbers 斐波那契数列

    The Fibonacci numbers are the numbers in the following integer sequence. 0, 1, 1, 2, 3, 5, 8, 13, 21 ...

  8. 查询处理Oracle锁表的问题

    --以下几个为相关表SELECT * FROM v$lock;SELECT * FROM v$sqlarea;SELECT * FROM v$session;SELECT * FROM v$proce ...

  9. Redis 入门 3.3 散列类型

    3.3.1 介绍   散列类型(hash)的键值也是一种字典结构,其储存了字段(field)和字段值的映射,但字段值只能是字符串,不支持其他数据类型,换句话说,散列类型不能嵌套其他的数据类型.一个散列 ...

  10. Maven使用基础

    (转)https://my.oschina.net/xiaomaoandhong/blog/104045 基于 约定优于配置(Convention Over Configuration)的原则,无特殊 ...