【洛谷P2602】数字计数
题目大意:求 [a,b] 中 0-9 分别出现了多少次。
题解:看数据范围应该是一个数位dp。
在 dfs 框架中维护当前的位置和到当前位置一共出现了多少个 \(x,x\in [0,9]\)。因此,用一个 dp[][] 数组记录一下状态即可,dp 的含义大概是前 i 位中出现了 j 个 x 的总 x 的个数是多少。
代码如下
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
LL dp[15][15];
int digit[15],tot,now;
LL dfs(int cur,int sum,bool lead,bool limit){
if(cur==0)return sum;
if(!lead&&!limit&&dp[cur][sum]!=-1)return dp[cur][sum];
LL ret=0;
int bit=limit?digit[cur]:9;
for(int i=0;i<=bit;i++){
if(!i&&lead)ret+=dfs(cur-1,sum,1,limit&&i==bit);
else if(i==now)ret+=dfs(cur-1,sum+1,0,limit&&i==bit);
else ret+=dfs(cur-1,sum,0,limit&&i==bit);
}
if(!lead&&!limit)dp[cur][sum]=ret;
return ret;
}
LL part(LL x){
tot=0;
memset(digit,0,sizeof(digit));
do{
digit[++tot]=x%10;
x/=10;
}while(x);
memset(dp,-1,sizeof(dp));
return dfs(tot,0,1,1);
}
int main(){
LL a,b;
cin>>a>>b;
for(int i=0;i<9;i++)now=i,printf("%lld ",part(b)-part(a-1));
now=9,printf("%lld\n",part(b)-part(a-1));
return 0;
}
【洛谷P2602】数字计数的更多相关文章
- 洛谷P2602 数字计数 [ZJOI2010] 数位dp
正解:数位dp 解题报告: 传送门! 打算在寒假把学长发过题解的题目都做辣然后把不会的知识点都落实辣! ⁄(⁄ ⁄•⁄ω⁄•⁄ ⁄)⁄ 然后这道题,开始想到的时候其实想到的是大模拟,就有点像之前考试贪 ...
- 洛谷 - P2602 - 数字计数 - 数位dp
https://www.luogu.org/problemnew/show/P2602 第二道数位dp,因为“数位dp都是模板题”(误),所以是从第一道的基础上面改的. 核心思想就是分类讨论,分不同情 ...
- 洛谷 P2602(数位DP)
### 洛谷 P2602 题目链接 ### 题目大意:给你一个区间,问你区间所有数字中,0.1.2 .... 9 的个数的总和分别为多少. 分析: 枚举 0 ~ 9 进行数位 DP 即可. 注意记忆化 ...
- 洛谷P1118 数字三角形游戏
洛谷1118 数字三角形游戏 题目描述 有这么一个游戏: 写出一个1-N的排列a[i],然后每次将相邻两个数相加,构成新的序列,再对新序列进行这样的操作,显然每次构成的序列都比上一次的序列长度少1,直 ...
- 洛谷P1553 数字翻转(升级版)
题目链接 https://www.luogu.org/problemnew/show/P1553 题目描述 给定一个数,请将该数各个位上数字反转得到一个新数. 这次与NOIp2011普及组第一题不同的 ...
- 洛谷P1144-最短路计数-最短路变形
洛谷P1144-最短路计数 题目描述: 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点\(1\)开始,到其他每个点的最短路有几条. 思路: \(Dijkstra ...
- 洛谷 P2602 [ZJOI2010]数字计数
洛谷 第一次找规律A了一道紫题,写篇博客纪念一下. 这题很明显是数位dp,但是身为蒟蒻我不会呀,于是就像分块打表水过去. 数据范围是\(10^{12}\),我就\(10^6\)一百万一百万的打表. 于 ...
- 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP
题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...
- 洛谷P2602 [ZJOI2010]数字计数(数位dp)
数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...
- 【题解】P2602 数字计数 - 数位dp
P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数 \(a\) 和 \(b\) ,求在 \([a,b]\) 中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中 ...
随机推荐
- 【翻译】WPF应用程序模块化开发快速入门(使用Prism+MEF)
编译并运行快速入门 需要在VisualStudio 2010上运行此快速入门示例 代码下载:ModularityWithMef.zip 先重新生成解决方案 再按F5运行此示例 说明: 在此快速入门示例 ...
- samba安装应用实例-1
应用实例:先安装samba软件,yum install -y samba1.需求:共享一个目录,任何人都可以访问,不用输密码,只读.(1)首先打开samba配置文件/etc/samba/smb.con ...
- 解决kubeadm部署kubernetes集群镜像问题
kubeadm 是kubernetes 的集群安装工具,能够快速安装kubernetes 集群.kubeadm init 命令默认使用的docker镜像仓库为k8s.gcr.io,国内无法直接访问,需 ...
- SAS数据挖掘实战篇【六】
SAS数据挖掘实战篇[六] 6.3 决策树 决策树主要用来描述将数据划分为不同组的规则.第一条规则首先将整个数据集划分为不同大小的 子集,然后将另外的规则应用在子数据集中,数据集不同相应的规则也不同 ...
- 依赖注入——angular
在Angular中创建一个对象时,需要依赖另一个对象,这是代码层的一种依赖关系,当这种依赖被声明后,Angular通过injector注入器将所依赖的对象进行注入操作. 一.依赖注入的原理 看下面的示 ...
- 【Qt开发】QTableWidget设置根据内容调整列宽和行高
QTableWidget要调整表格行宽主要涉及以下一个函数 1.resizeColumnsToContents(); 根据内容调整列宽 ...
- 【VS开发】 自己编写一个简单的ActiveX控件——详尽教程
最近开始学ActiveX控件编程,上手不太容易,上网想找相关教程也没合适的,最后还是在师哥的指导下完成了第一个简单控件的开发,现在把开发过程贴出来与大家分享一下~ (环境说明--平台:vs2005:语 ...
- flaskurl传参用法
from flask import Flask,request app = Flask(__name__) @app.route("/") def index(): return ...
- python 并发编程 基于gevent模块实现并发的套接字通信
之前线程池是通过操作系统切换线程,现在是程序自己控制,比操作系统切换效率要高 服务端 from gevent import monkey;monkey.patch_all() import geven ...
- numpy数组转置与轴变换
numpy数组转置与轴变换 矩阵的转置 >>> import numpy as np >>> arr=np.arange(15).reshape((3,5)) &g ...