wannafly 练习赛10 E 数列查找(莫队+分块分块分块......)
链接:https://www.nowcoder.net/acm/contest/58/E
空间限制:C/C++ 32768K,其他语言65536K
64bit IO Format: %lld
题目描述
保证输入合法
输入描述:
第一行一个数n
第二行n个数表示序列a
第三行一个数m
之后m行每行四个数表示l r k1 k2
输出描述:
对于每次询问输出一行一个数表示答案
输入例子:
10
3 6 6 8 3 10 1 6 5 6
10
4 7 1 2
5 7 1 1
5 6 1 2
2 6 2 1
8 9 1 1
6 9 1 2
1 2 1 1
1 4 2 1
5 7 1 3
2 6 1 3
输出例子:
3
1
10
6
5
5
3
6
10
10
-->
输入
10
3 6 6 8 3 10 1 6 5 6
10
4 7 1 2
5 7 1 1
5 6 1 2
2 6 2 1
8 9 1 1
6 9 1 2
1 2 1 1
1 4 2 1
5 7 1 3
2 6 1 3
输出
3
1
10
6
5
5
3
6
10
10
说明
3 6 6 8 3 10 1 6 5 6
[4,7]中出现1次的有1,3,8,10,第2小的是3
[5,7]中出现1次的有1,3,10,第1小的是1
[5,6]中出现1次的有3,10,第2小的是10
[2,6]中出现2次的有6,第1小的是6
[8,9]中出现1次的有5,6,第1小的是5
[6,9]中出现1次的有1,5,6,10,第2小的是5
[1,2]中出现1次的有3,6,第1小的是3
[1,4]中出现2次的有6,第1小的是6
[5,7]中出现1次的有1,3,10,第3小的是10
[2,6]中出现1次的有3,8,10,第3小的是10
备注:
对于100%的数据,
有1<=n,a[i],m<=40000
数据保证一定能找到那个数
这一题没有码出来,去看了一下别人提交的代码看懂就没自己写了
/////////////////////////////////////////////////
可以考虑进行高维离散化
比如说,对于一个数x,其在序列中出现了y次
开个vector < int > v[ MAXN ]
在v[1] , v[2] ... v[y]中都push_back( x )
然后对于每个vector,分别进行离散化
这样就保证了空间线性
在高维离散化的基础上进行值域分块,然后跑莫队即可
O( nsqrtm + msqrtn ) = O( msqrtn )
/////////////////////////////////////////////////
题解里是高维离散化,但是我看到的代码我感觉那位大佬写的好像更好一点,
他是用了两次分块,次数分块和值分块
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int read(){
int x=,f=;char ch=getchar();
while (ch<''||ch>'') {if (ch=='-') f=-;ch=getchar();}
while (''<=ch&&ch<='') x=(x<<)+(x<<)+ch-'',ch=getchar();
return x*f;
}
const int N=; int n,m,have[N],a[N],ap[N],cnt[N][],cntk[],ans[N],pos,bb,blo,L,R;
//have[i]表示是否有次数为i的值出现
//ap[i]表示值为i的数字出现了几次
//cntk[i]表示有多少个不同数值出现了k次,k处在i块里
//cnt[i][j]表示出现了i次的值里,值处在j块有多少
struct node{
int l,r,blo,id,k1,k2;
}q[N]; bool operator < (const node &A,const node &B){
return A.blo<B.blo||A.blo==B.blo&&A.r<B.r;
} void work(int x,int w){
int val=a[x],cc=ap[val];
if (!--have[cc]) cntk[(cc-)/bb+]--;
cnt[cc][(val-)/bb+]--;
ap[val]+=w;cc=ap[val];
if (++have[cc]==) cntk[(cc-)/bb+]++;
cnt[cc][(val-)/bb+]++; //[次数][值所属的块]
} int qry(int k1,int k2){
int i=,j;
while (k1>cntk[i]) k1-=cntk[i],i++;//sqrt(n),次数所属的块,每个块有多少个出现了
for (j=(i-)*bb+;j<=i*bb;j++)//sqrt(n)
if (have[j])
if (!--k1) break;
pos=j;i=;//k1小的是j次/pos次
while (k2>cnt[pos][i]) k2-=cnt[pos][i],i++;//sqrt(n)
for (j=(i-)*bb+;j<=i*bb;j++)//sqrt(n)
if (ap[j]==pos)
if (!--k2) break;
return j;
}
int main(){ n=read();bb=(int)sqrt(n);
for (int i=;i<=n;i++) a[i]=read();
m=read();blo=(int)sqrt(m);
for (int i=;i<=m;i++)
q[i].l=read(),q[i].r=read(),q[i].k1=read(),
q[i].k2=read(),q[i].id=i,q[i].blo=(q[i].l-)/blo+;
sort(q+,q+m+);
L=;R=;
for (int i=;i<=m;i++)
{
while (L>q[i].l) work(--L,);
while (R<q[i].r) work(++R,);
while (L<q[i].l) work(L++,-);
while (R>q[i].r) work(R--,-);
ans[q[i].id]=qry(q[i].k1,q[i].k2);
}
for (int i=;i<=m;i++) printf("%d\n",ans[i]);
return ;
}
引用了别的大佬的代码,加了一点注释
分块自己用的还是很生涩,惨
假如是高维离散化的话,应该得跟f题一样用链表存一下出现的次数,然后每个次数里面的值再分块查询,emm就这样
wannafly 练习赛10 E 数列查找(莫队+分块分块分块......)的更多相关文章
- wannafly 练习赛10 f 序列查询(莫队,分块预处理,链表存已有次数)
链接:https://www.nowcoder.net/acm/contest/58/F 时间限制:C/C++ 5秒,其他语言10秒 空间限制:C/C++ 262144K,其他语言524288K 64 ...
- (原创)BZOJ 2038 小Z的袜子(hose) 莫队入门题+分块
I - 小Z的袜子(hose) 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… 具体来说,小Z ...
- POJ 2104 - 主席树 / 询问莫队+权值分块
传送门 题目大意应该都清楚. 今天看到一篇博客用分块+莫对做了这道题,直接惊呆了. 首先常规地离散化后将询问分块,对于某一询问,将莫队指针移动到指定区间,移动的同时处理权值分块的数字出现次数(单独.整 ...
- 2019.01.08 bzoj3809: Gty的二逼妹子序列(莫队+权值分块)
传送门 题意:多组询问,问区间[l,r]中权值在[a,b]间的数的种类数. 看了一眼大家应该都知道要莫队了吧. 然后很容易想到用树状数组优化修改和查询做到O(mnlogamax)O(m\sqrt nl ...
- BZOJ 3339 && BZOJ 3585 莫队+权值分块
显然若一个数大于n就不可能是答案. #include <iostream> #include <cstring> #include <cstdio> #includ ...
- 莫队+分块 BZOJ 3809
3809: Gty的二逼妹子序列 Time Limit: 80 Sec Memory Limit: 28 MBSubmit: 1634 Solved: 482[Submit][Status][Di ...
- 【BZOJ 3735】苹果树 树上莫队(树分块+离线莫队+鬼畜的压行)
2016-05-09 UPD:学习了新的DFS序列分块,然后发现这个东西是战术核导弹?反正比下面的树分块不知道要快到哪里去了 #include<cmath> #include<cst ...
- 【BZOJ】2038: [2009国家集训队]小Z的袜子(hose)(组合计数+概率+莫队算法+分块)
http://www.lydsy.com/JudgeOnline/problem.php?id=2038 学了下莫队,挺神的orzzzz 首先推公式的话很简单吧... 看的题解是从http://for ...
- 【BZOJ4129】Haruna’s Breakfast(树上莫队)
[BZOJ4129]Haruna's Breakfast(树上莫队) 题面 BZOJ Description Haruna每天都会给提督做早餐! 这天她发现早饭的食材被调皮的 Shimakaze放到了 ...
随机推荐
- java来接收邮件并解析邮件正文中的表格
这里是实际需求中的一个DEMO 有一部分内容进行了注释和处理,参考需要修改成自己的实际参数.另这个是对于实际一个场景的案例并不是通用解决的工具类. import org.jsoup.Jsoup; im ...
- [Vue] vue的一些面试题
1.v-model 的原理 v-model 是一个语法糖,它即可以支持原生表单元素,也可以支持自定义组件.v-model 在内部为不同的输入元素使用不同的属性并抛出不同的事件. text 和 text ...
- 剑指offer 数字翻译成字符串
0 -> 'a', 1->'b', ..., 11 -> 'l', ..., 25->'z'. 计算一个数有多少种不同的翻译方法. 分析:记f[i]表示从第i位起的不同翻译数目 ...
- springboot中的编码设置
在springboot中编码配置可以通过filter也可以通过springboot的核心配置文件application.properties中配置如下信息: #配置字符编码spring.http.en ...
- linux复习3:linux字符界面的操作
一.前言 1.对linux服务器进行管理的时候,经常要进入字符界面进行操作,使用命令需要记住该命令的相关选项和参数.vi编辑器可以用于编辑任何ASCII文本,功能非常的强大,可以对文本进行创建.查找. ...
- 什么是file_sort?如何避免file_sort
阿里巴巴编码规范有这么一例 [推荐]如果有order by场景,请注意利用索引的有序性. order by最后的字段是组合索引的一部分,并且放在索引组合顺序的最后,避免出现file_sort的情况,影 ...
- Redis【1】Linux下安装~
先去Redis官网下载tar.gz文件.点击中间的[Check the downloads page.].再点击中间Stable 模块的[Download]下载 这把我做演示的文件是 redis-5. ...
- openstack基础架构
申明:本文主要观点引用自cloudman:http://blog.51cto.com/cloudman,感谢cloudman的分享. OpenStack主要是通过Nova,Neutron,Glance ...
- web渗透系列--信息收集
信息收集对于渗透测试前期来说是非常重要的,因为只有我们掌握了目标网站或目标主机足够多的信息之后,我们才能更好地对其进行漏洞检测.正所谓,知己知彼百战百胜! 信息收集的方式可以分为两种:主动和被动. 主 ...
- 第04课:GDB常用命令详解(上)
本课的核心内容如下: run命令 continue命令 break命令 backtrace与frame命令 info break.enable.disable和delete命令 list命令 prin ...