[51Nod1623] 完美消除
$solution:$
首先我们可以发现一个结论,对于一个数 $x$ ,它的最低修改次数为它每位与前去中是否都比此位上的数大,有则答案 $-1$ 。因为若有小数则没有办法将其答案贡献变低。
这个东西可以直接单调栈维护一个递增序列。
所以这样 $dp$ 状态也很显然了,设 $f_{i,j,sta}$ 表示当前到 $i$ 位,答案为 $j$ ,$sta$ 表示当前栈中 $0-9$ 是否在栈中。
简单数位转移即可。
时间复杂度 $O(10\times 18^2 \times 2^{10})$ 。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define int long long
inline int read(){
int f=,ans=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){ans=ans*+c-'';c=getchar();}
return f*ans;
}
const int MAXN=;
int dig[],f[MAXN][MAXN][<<];
int l,r,k,cnt;
void debug(int sta){
int Dig[];
Dig[]=;
while(sta){
Dig[++Dig[]]=sta%;
sta/=;
}
for(int i=Dig[];i>=;i--) printf("%d ",Dig[i]);printf("\n");
return ;
}
int dfs(int ps,int K,int sta,int done){
if(!done&&f[ps][K][sta]!=-) return f[ps][K][sta];
if(ps==){
if(K==k) return ;
return ;
}
int end,Ans=;
if(done) end=dig[ps];
else end=;
for(int i=;i<=end;i++){
int S=sta;
for(int j=i+;j<=;j++) if(S&(<<j)) S-=(<<j);
if(S&(<<i)) Ans+=dfs(ps-,K,S,done&(i==dig[ps]));
else Ans+=dfs(ps-,K+,S+(<<i),done&(i==dig[ps]));
}
if(done==) f[ps][K][sta]=Ans;
return Ans;
}
int solve(int x){
dig[]=;
while(x){
dig[++dig[]]=x%;
x/=;
}
return dfs(dig[],,,);
}
signed main(){
freopen("digit.in","r",stdin);
freopen("digit.out","w",stdout);
memset(f,-,sizeof(f));
l=read(),r=read(),k=read();
printf("%lld\n",solve(r)-solve(l-));return ;
}
[51Nod1623] 完美消除的更多相关文章
- bzoj 1006: [HNOI2008]神奇的国度 弦图的染色问题&&弦图的完美消除序列
1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 1788 Solved: 775[Submit][Stat ...
- 无向图的完美消除序列 判断弦图 ZOJ 1015 Fish net
ZOJ1015 题意简述:给定一个无向图,判断是否存在一个长度大于3的环路,且其上没有弦(连接环上不同两点的边且不在环上). 命题等价于该图是否存在完美消除序列. 所谓完美消除序列:在 vi,v ...
- BZOJ 1006 完美消除序列&最大势算法&弦图
K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则.他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的.为了巩固三角关系,K国禁止四边关系,五边关系等等的存在.所谓N边关系 ...
- 51NOD 1623 完美消除 数位DP
题目描述: 定义数的消除操作为选定[L,R,x],如果数的第L到第R位上的数字都大于等于x,并且这些数都相等,那么该操作是合法的(从低位到高位编号,个位是第一位,百位是第二位……),然后将这些位数上的 ...
- [51nod Round 15 B ] 完美消除
数位DP. 比较蛋疼的是,设a[i]表示第i位上数字,比方说a[1]<a[2]>a[3],且a[1]==a[3]时,这两位上的数可以放在一起搞掉. 所以就在正常的f数组里多开一维,表示后面 ...
- 51nod 1623 完美消除(数位DP)
首先考虑一下给一个数如何求它需要多少次操作. 显然用一个单调栈就可以完成:塞入栈中,将比它大的所有数都弹出,如果栈中没有当前数,答案+1. 因为数的范围只有0~9,所以我们可以用一个二进制数来模拟这个 ...
- bzoj 1006 [HNOI2008]神奇的国度 弦图+完美消除序列+最大势算法
[HNOI2008]神奇的国度 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 4370 Solved: 2041[Submit][Status][D ...
- 【BZOJ】1006: [HNOI2008]神奇的国度 弦图消除完美序列问题
1006: [HNOI2008]神奇的国度 Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则. 他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的 ...
- BZOJ 1006 【HNOI2008】 神奇的国度
题目链接:神奇的国度 一篇论文题--神奇的弦图,神奇的MCS-- 感觉我没有什么需要多说的,这里简单介绍一下MCS: 我们给每个点记录一个权值,从后往前依次确定完美消除序列中的点,每次选择权值最大的一 ...
随机推荐
- 配置:Uri
URI是网络资源的定义,代表了要操作的数据,Uri主要包含了两部分信息: 1>需要操作的ContentProvider 2>对ContentProvider中的什么数据进行操作 一个 ...
- HY中考游记
回首三年荏苒,还是有许多忘不了,有始有终,最后以一篇游记来记录落幕吧 Day -inf 为了准备中考从机(颓)房回到学校了,停课这么久,也该好好备考了 希望能回到以前的文化课水平QAQ Day -? ...
- 【BZOJ5249】IIIDX(贪心,线段树)
题意: 思路:赛季结束之前余总推荐的一道好题,不愧是余总 From https://www.cnblogs.com/suika/p/8748115.html 简略的说就是在预留足够多的位置的前提下贪心 ...
- centos网卡配置NM_CONTROLLED=”yes” 慎用
今天有1台服务器修改了 /etc/sysconfig/network-scripts/ifcfg-eth0 配置文件中的一个参数: NM_CONTROLLED=“yes” 修改成 NM_CONTROL ...
- 读取hibernate.cfg.xml文件
new Configuration().configure().buildSessionFactory() new Configuration()默认是读取hibernate.properties 所 ...
- Springboot 后台管理框架halo.kotlin
https://gitee.com/backControl/halo-kotlin 现在开了两个分支,一个分支在做数据分析,一个分支是集成spring oauth2.0技术 之后会接入最新的技术和实现 ...
- mysq远程连接报错,host..
在本机登入mysql后,更改"mysql"数据库里的"user"表里的"host"项,从"localhost"改为'%' ...
- centOS7 flask项目布署
先用1张图表示centOS布署flask的关键点,以及可能遇到的问题,及解决办法. 图片看不清,可以[下载]下来看,清晰度能够看清字 [目标] 局域网内,通过url可以访问flask编写的api 更新 ...
- [VBA]批量新建指定名称的工作表
sub 批量新建指定名称的工作表() Dim i As Integer For i = 2 To 10 '根据实际情况修改i大小 Worksheets.Add after:=Worksheets ...
- freemarker程序开发
1.程序开发入门 1.1 创建配置实例 首先,你应该创建一个freemarker.template.Configuration的实例,然后调整它的设置.Configuration实例是存储FreeMa ...