题目链接:http://poj.org/problem?id=3237

题意:给定一棵n个结点n-1条边的树。 每条边都是一个边权。 现在有4种操作

1:CHANGE I V:把(输入的)第i条边的边权改为V

2:NEGATE a b:把点a到点b的路径上的边权取反

3:QUERY a b:输出点a到点b的路径上边权最大值。

4:DONE:结束操作。

思路:树链剖分。 涉及的是边权所以把边权转化为点权,做法是将边权赋值到这条边deep大的点上。 剖分后用线段树维护。 1操作对应单点更新 2操作对应区间更新 3操作对应区间查询。

对于2操作。用线段树维护一个结点的最大值和最小值。那么反正相当于把最大值和最小值互换然后分别乘上个(-1)。

#define _CRT_SECURE_NO_DEPRECATE
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<stdio.h>
#include<queue>
#include<vector>
#include<stack>
#include<map>
#include<set>
#include<time.h>
#include<cmath>
#include<sstream>
#include<assert.h>
using namespace std;
#define L(x) x<<1
#define R(x) x<<1|1
typedef long long int LL;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3fLL;
const int MAXN = + ;
int val[MAXN],head[MAXN], tot, cnt, edgesId[MAXN];
struct Edge{
int to, next;
int value;
}Edges[MAXN * ];
void add(int u, int v, int w){
Edges[tot].to = v;
Edges[tot].value = w;
Edges[tot].next = head[u];
head[u] = tot++;
}
int id[MAXN], son[MAXN], deep[MAXN], size[MAXN], fa[MAXN], reid[MAXN], top[MAXN];
void Init(){
tot = ; cnt = ;
memset(head, -, sizeof(head));
memset(son, -, sizeof(son));
memset(val, , sizeof(val));
}
void DFS1(int u, int p,int dep){
fa[u] = p; size[u] = ; deep[u] = dep;
for (int i = head[u]; i != -; i = Edges[i].next){
if (Edges[i].to != p){
val[Edges[i].to] = Edges[i].value; //deep大的点获得边权
edgesId[(int)ceil(i / 2.0)] = Edges[i].to;
DFS1(Edges[i].to, u,dep+);
size[u] += size[Edges[i].to];
if (son[u] == - || size[Edges[i].to] > size[son[u]]){
son[u] = Edges[i].to;
}
}
}
}
void DFS2(int u, int tp){
id[u] = ++cnt; reid[id[u]] = u; top[u] = tp;
if (son[u] == -){ return; }
DFS2(son[u], tp);
for (int i = head[u]; i != -; i = Edges[i].next){
if (son[u] != Edges[i].to&&Edges[i].to != fa[u]){
DFS2(Edges[i].to, Edges[i].to);
}
}
}
struct Node{
int st, ed;
int lazy, Max, Min;
}Seg[MAXN * ];
void Build(int l, int r, int k){
Seg[k].st = l; Seg[k].ed = r; Seg[k].lazy = ;
if (l == r){
Seg[k].Max = Seg[k].Min = val[reid[l]];
return;
}
int mid = (l + r) / ;
Build(l, mid, L(k)); Build(mid + , r, R(k));
Seg[k].Max = max(Seg[L(k)].Max, Seg[R(k)].Max);
Seg[k].Min = min(Seg[L(k)].Min, Seg[R(k)].Min);
}
void Modify(int k){
swap(Seg[k].Min, Seg[k].Max);
Seg[k].Min *= -;
Seg[k].Max *= -;
}
void pushUp(int k){
Seg[k].Max = max(Seg[L(k)].Max, Seg[R(k)].Max);
Seg[k].Min = min(Seg[L(k)].Min, Seg[R(k)].Min);
}
void pushDown(int k){
if (Seg[k].lazy){
Seg[k].lazy ^= ;
Seg[L(k)].lazy ^= ;
Modify(L(k));
Seg[R(k)].lazy ^= ;
Modify(R(k));
}
}
void CHANGE(int pos, int val, int k){
if (Seg[k].st ==Seg[k].ed){
Seg[k].Max = Seg[k].Min = val;
return;
}
pushDown(k);
if (pos <= Seg[L(k)].ed){
CHANGE(pos, val, L(k));
}
else{
CHANGE(pos, val, R(k));
}
pushUp(k);
}
void NEGATE(int l, int r, int k){
if (Seg[k].st == l&&Seg[k].ed == r){
Seg[k].lazy ^= ;
Modify(k);
return;
}
pushDown(k);
if (r <= Seg[L(k)].ed){
NEGATE(l, r, L(k));
}
else if (l >= Seg[R(k)].st){
NEGATE(l, r, R(k));
}
else{
NEGATE(l, Seg[L(k)].ed, L(k));
NEGATE(Seg[R(k)].st, r, R(k));
}
pushUp(k);
}
void NEGATE(int u, int v){
int f1 = top[u], f2 = top[v];
while (f1 != f2){
if (deep[f1] < deep[f2]){
swap(f1, f2);
swap(u, v);
}
NEGATE(id[f1], id[u], );
u = fa[f1]; f1 = top[u];
}
if (u == v){ return; }
if (deep[u] > deep[v]){
swap(u, v);
}
NEGATE(id[son[u]], id[v], );
}
int Query(int l, int r, int k){
if (Seg[k].st == l&&Seg[k].ed == r){
return Seg[k].Max;
}
int _Max = -inf;
pushDown(k);
if (r <= Seg[L(k)].ed){
_Max = Query(l, r, L(k));
}
else if (l >= Seg[R(k)].st){
_Max = Query(l, r, R(k));
}
else{
_Max = max(Query(l, Seg[L(k)].ed, L(k)), Query(Seg[R(k)].st, r, R(k)));
}
pushUp(k);
return _Max;
}
int Query(int u, int v){
int ans = -inf;
int f1 = top[u], f2 = top[v];
while (f1 != f2){
if (deep[f1] < deep[f2]){
swap(f1, f2);
swap(u, v);
}
ans = max(ans, Query(id[f1], id[u], ));
u = fa[f1]; f1 = top[u];
}
if (u == v){ return ans; }
if (deep[u] > deep[v]){
swap(u, v);
}
ans = max(ans, Query(id[son[u]], id[v], ));
return ans;
}
int main(){
//#ifdef kirito
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
//#endif
// int start = clock();
int n,t;
scanf("%d", &t);
while (t--){
scanf("%d", &n); Init();
for (int i = ; i < n; i++){
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
add(u, v, w); add(v, u, w);
}
DFS1(, , ); DFS2(, ); Build(, n, );
char ope[];
while (scanf("%s",ope)&&ope[]!='D'){
int u,v;
scanf("%d%d", &u,&v);
switch (ope[])
{
case 'Q': printf("%d\n", (u==v?:Query(u, v))); break;
case 'C': CHANGE(id[edgesId[u]], v, ); break;
default: NEGATE(u, v); break;
}
}
}
//#ifdef LOCAL_TIME
// cout << "[Finished in " << clock() - start << " ms]" << endl;
//#endif
return ;
}

POJ 3237 树链剖分的更多相关文章

  1. poj 3237(树链剖分+线段树)

    题意:给一棵树,三种操作.将第i条边的权值改为v,将a到b的路径上的边的权值全部取反,求a到b路径上边的权值的最大值. 思路:明显的树链剖分,加上线段树的操作.因为有取反的操作所以每个区间要记录最大值 ...

  2. POJ 3237 /// 树链剖分 线段树区间修改(*-1)

    题目大意: 给定树的N个结点 编号为1到N 给定N-1条边的边权. 三种操作: CHANGE k w:将第 k 条边的权值改成 w. NEGATE x y:将x到y的路径上所有边的权值乘 -1. QU ...

  3. poj 3237 树链剖分模板(用到线段树lazy操作)

    /* 本体在spoj375的基础上加了一些操作,用到线段树的lazy操作模板类型 */ #include<stdio.h> #include<string.h> #includ ...

  4. POJ 2763 (树链剖分+边修改+边查询)

    题目链接:http://poj.org/problem?id=2763 题目大意:某人初始在s点.有q次移动,每次移动沿着树上一条链,每经过一条边有一定花费,这个花费可以任意修改.问每次移动的花费. ...

  5. POJ 4718 /// 树链剖分+线段树区间合并 求树上两点间的LCIS长度

    题目大意: 给定n个点 每个点都有权值 接下来给定树的n条边 第 i 个数 a[i] 表示 i+1到a[i]之间 有一条边 给定q q个询问 每次询问给出 x y 求x到y的最长上升子序列的长度 题解 ...

  6. POJ 2763 树链剖分 线段树 Housewife Wind

    单个边的权值修改以及询问路径上的权值之和. 数据量比较大,用vector存图会超时的. #include <iostream> #include <cstdio> #inclu ...

  7. HDU 3966 & POJ 3237 & HYSBZ 2243 树链剖分

    树链剖分是一个很固定的套路 一般用来解决树上两点之间的路径更改与查询 思想是将一棵树分成不想交的几条链 并且由于dfs的顺序性 给每条链上的点或边标的号必定是连着的 那么每两个点之间的路径都可以拆成几 ...

  8. POJ 3237:Tree(树链剖分)

    http://poj.org/problem?id=3237 题意:树链剖分.操作有三种:改变一条边的边权,将 a 到 b 的每条边的边权都翻转(即 w[i] = -w[i]),询问 a 到 b 的最 ...

  9. poj 3237 Tree 树链剖分

    题目链接:http://poj.org/problem?id=3237 You are given a tree with N nodes. The tree’s nodes are numbered ...

随机推荐

  1. CentOS 6.3下Zabbix监控MySQL数据库参数

    系统环境:CentOS 6.3 x64  http://www.linuxidc.com/Linux/2012-12/76583.htm mysql:    mysql-5.6.10 http://w ...

  2. C++ begin()和end()

    begin(a)指向数组a的第一个元素,end(a)指向数组a最后一个元素之后的一个元素 #include <iostream> using namespace std; int main ...

  3. c++11 快速退出

    C++程序中有以下几种推出方式:terminate abort exit terminate: 实际上是c++语言中异常处理的一部分(包含在<exception>头文件中),一般而言,没有 ...

  4. 【CF1244D】Paint the Tree(树形DP,树)

    题意: n<=1e5,1<=a[i][j]<=1e9 思路: 不是很懂INF为什么要开到1e15,我觉得只要1e14就好 #include<bits/stdc++.h> ...

  5. 前端JS编码规范

    对初学者来说应该学习的JavaScript编码规范: 传送门: http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=29292475 ...

  6. PHPExcel 之常用功能

    PHPExcel基本操作: 定义EXCEL实体 即定义一个PHPEXCEL对象,并设置EXCEL对象内显示内容 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ...

  7. 30 August

    DP 复习. 参考 redbag 博客 提供的题表. P2858 [USACO06FEB] Treats for the Cows 区间 DP. 转换思路,题面从外往里递推,我们采用从里往外递推,权值 ...

  8. vue键盘修饰符

    keyup事件 <input type='input' @keyup="keyEvent"> keyup.enter事件 <input type='input' ...

  9. HTML--JS 二级联动

    <!doctype html> <html> <head> <meta charset="UTF-8"> <title> ...

  10. Python算法每日一题--002--求众数

    给定一个大小为 n 的数组,找到其中的众数.众数是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素. 你可以假设数组是非空的,并且给定的数组总是存在众数. 示例 1: 输入: [3,2,3]输出: 3示 ...