题目描述

现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形:

左上角点为(1,1),右下角点为(N,M)(上图中N=3,M=4).有以下三种类型的道路

1:(x,y)<==>(x+1,y)

2:(x,y)<==>(x,y+1)

3:(x,y)<==>(x+1,y+1)

道路上的权值表示这条路上最多能够通过的兔子数,道路是无向的. 左上角和右下角为兔子的两个窝,开始时所有的兔子都聚集在左上角(1,1)的窝里,现在它们要跑到右下角(N,M)的窝中去,狼王开始伏击这些兔子.当然为了保险起见,如果一条道路上最多通过的兔子数为K,狼王需要安排同样数量的K只狼,才能完全封锁这条道路,你需要帮助狼王安排一个伏击方案,使得在将兔子一网打尽的前提下,参与的狼的数量要最小。因为狼还要去找喜羊羊麻烦。

输入输出格式

输入格式:

第一行为N,M.表示网格的大小,N,M均小于等于1000.

接下来分三部分

第一部分共N行,每行M-1个数,表示横向道路的权值.

第二部分共N-1行,每行M个数,表示纵向道路的权值.

第三部分共N-1行,每行M-1个数,表示斜向道路的权值.

输出格式:

输出一个整数,表示参与伏击的狼的最小数量.

输入输出样例

输入样例#1:

3 4

5 6 4

4 3 1

7 5 3

5 6 7 8

8 7 6 5

5 5 5

6 6 6

输出样例#1:

14

这道题算是网络流的水题吧,看到要把兔子全部阻截掉基本上可以考虑到网络流了。

其实这道题是要我们求最小割

由最大流=最小割(证明网上有)

直接跑最大流即可。

建边看似麻烦实际上冷静下来慢慢想其实很简单了。

需要注意的是这张图是无向图,我们把两条边的初始流量都见成\(v\)就可以了

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0') {if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
int n,m,cnt=1,s,t;
int inf=2000000000;
int head[1000001],team[1000001],deep[1000001];
struct node{
int to,next,v;
}edge[6000001];
void add(int x,int y,int v)
{
cnt++;
edge[cnt].to=y;
edge[cnt].next=head[x];
edge[cnt].v=v;
head[x]=cnt;
}
bool bfs();
int dfs(int,int);
int main()
{
int x;
n=read();m=read();
for(int i=1;i<=n;i++)
{
for(int j=1;j<m;j++)
{
x=read();
add((i-1)*m+j,(i-1)*m+j+1,x);
add((i-1)*m+j+1,(i-1)*m+j,x);
}
}
for(int i=1;i<n;i++)
{
for(int j=1;j<=m;j++)
{
x=read();
add((i-1)*m+j,i*m+j,x);
add(i*m+j,(i-1)*m+j,x);
}
}
for(int i=1;i<n;i++)
{
for(int j=1;j<m;j++)
{
x=read();
add((i-1)*m+j,i*m+j+1,x);
add(i*m+j+1,(i-1)*m+j,x);
}
}
s=1;t=n*m;
int ans=0;
while(bfs())
{
int d;
while(d=dfs(s,inf))
{
ans+=d;
}
}
printf("%d",ans);
}
bool bfs()
{
int u,v,l=0,r=1;
memset(deep,0,sizeof(deep));
memset(team,0,sizeof(team));
team[1]=s;deep[s]=1;
while(l<r)
{
l++;
u=team[l];
for(int i=head[u];i;i=edge[i].next)
{
v=edge[i].to;
if(!deep[v]&&edge[i].v>0)
{
r++;
deep[v]=deep[u]+1;
team[r]=v;
}
}
}
if(!deep[t]) return false;
return true;
}
int dfs(int k,int v)
{
//cout<<k<<".."<<endl;
if(k==t) return v;
int u,d;
for(int i=head[k];i;i=edge[i].next)
{
u=edge[i].to;
if(deep[u]==deep[k]+1&&edge[i].v>0)
{
d=dfs(u,min(edge[i].v,v));
if(d>0)
{
edge[i].v-=d;
edge[(i^1)].v+=d;
return d;
}
}
}
if(d==0) deep[k]=0;
return 0;
}

[BJOI2006]狼抓兔子(网络流)的更多相关文章

  1. P4001 [BJOI2006]狼抓兔子(对偶图)

    P4001 [BJOI2006]狼抓兔子 最短路+对偶图 看这题最容易想到的就是网络流.Dinic可以过,据说还跑得比正解快. 如果不写网络流,那么需要知道2个前置知识:平面图和对偶图(右转baidu ...

  2. BJOI2006狼抓兔子

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 9967  Solved: 2267[Submit][S ...

  3. BZOJ1001 BJOI2006 狼抓兔子

    Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个 ...

  4. 752. [BJOI2006] 狼抓兔子

    ★★★   输入文件:bjrabbit.in   输出文件:bjrabbit.out   简单对比时间限制:1 s   内存限制:162 MB Description   Source: Beijin ...

  5. [BJOI2006]狼抓兔子

    题目描述 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: ...

  6. 1001. [BJOI2006]狼抓兔子【最小割】

    Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一 ...

  7. BZOJ1001 洛谷4001 [BJOI2006]狼抓兔子 题解

    题目 这个题目有多种解法,这个题也是一个比较经典的题了,正是因为他的多样的做法,这个题主要难在建图和优化,因为这是一个网格图,所以spfa肯定过不去,所以用最短路解法的话,只能用dij,而网络流也是要 ...

  8. P4001 [BJOI2006]狼抓兔子

    传送门 思路: 不少题解都是用网络流来做最小割(网络流是什么),但对于一个不会网络流的蒟蒻来做这题相当困难. 听机房daolao说可以重构图做最短路.然后就baidu将平面图转换成一个对偶图,因为网络 ...

  9. BZOJ1001或洛谷4001 [BJOI2006]狼抓兔子

    BZOJ原题链接 洛谷原题链接 显然就是求最小割. 而对于一个平面图有结论,最大流=最小割=对偶图最短路. 所以这题可用最大流或是转换为对偶图求最短路,这里我是用的对偶图. 虽然理论上按上界算,这题\ ...

随机推荐

  1. c#Main()方法,java 是小写main

    main 方法,staitc 静态关键首字母大写,区分大小写,java 是main小写,返回值 ,vodi,int参数:可选static void Main(string[] args){ }

  2. python全栈开发,Day43(引子,协程介绍,Greenlet模块,Gevent模块,Gevent之同步与异步)

    昨日内容回顾 I/O模型,面试会问道 I/O操作,不占用CPU,它内部有一个专门的处理I/O模块 print和写log属于I/O操作,它不占用CPU 线程 GIL保证一个进程中的多个线程在同一时刻只有 ...

  3. promise以及async、await学习总结

    Promise/async.await帮我们解决了什么 它给我们提供了一种新的异步编程解决方案,同时避免了困扰已久的回调地狱 // 异步的处理可能会产生这样的回调地狱(第二个异步操作和第一个异步的结果 ...

  4. P1199三国游戏

    众所周知,三国题材的游戏很多,小涵遇到了其中之一 传送 这个题显然用贪心做,但是怎么贪心? 首先我们只知道计算机的策略,但我们不知道小涵的策略.所以我们要想小涵是怎么挑的. 计算机的策略是拆掉你每次选 ...

  5. docker 保存镜像 加载镜像

    1.保存镜像 docker save -o 保存的文件名  来源镜像 2.加载镜像 docker load -i 保存的文件名

  6. Kubernetes tutorial - K8S 官方入门教程 中文翻译

    官方教程,共 6 个小节.每一小节的第一部分是知识讲解,第二部分是在线测试环境的入口. kubectl 的命令手册 原文地址 1 创建集群 1.1 使用 Minikube 创建集群 Kubernete ...

  7. hbase报Dead Region Servers

    问题描述: 16010端口启动成功,16020未启动. hbase-root-regionserver-hbase2.log日志: 2019-08-14 16:45:10,552 WARN [Thre ...

  8. 学习:多项式算法----FWT

    FWT也称快速沃尔什变换,是用来求多项式之间位运算的系数的.FWT的思想与FFT有异曲同工之妙,但较FFT来说,FWT比较简单. 前言 之前学习FFT(快速傅里叶变换)的时候,我们知道FFT是用来快速 ...

  9. 命令行下DEBIAN7时间错误的问题(转)

    Debian下的时间设置问题 Debian系统经常会遇到时间不准的情况,以下几个步骤可让您轻松摆脱烦恼: 1.设定正确的时区编辑/etc/timezone,写入Asia/Shanghai 2.使用da ...

  10. 20190825 On Java8 第十二章 集合

    第十二章 集合 java.util 库提供了一套相当完整的集合类(collection classes)来解决这个问题,其中基本的类型有 List . Set . Queue 和 Map. 不要在新代 ...