基本思路:

用定点数组记录每个子树的最近邻居。

对于每一条边进行处理:

如果这条边连成的两个顶点同属于一个集合,则不处理,否则检测这条边连接的两个子树,如果是连接这两个子树的最小边,则更新 (合并)。

时间复杂度平均 \(O(V+E)\),最坏 \(O((V+E)\log V)\)。

下面是 Borůvka 算法演示动图:(源:Wikimedia)

程序代码:

struct node {int x, y, w; } edge[M];
int d[N]; // 各子树的最小连外边的权值
int e[N]; // 各子树的最小连外边的索引
bool v[M]; // 防止边重复统计 int fa[N];
int find(int x) {return x==fa[x] ? x : (fa[x]=find(fa[x])); }
void join(int x, int y) {fa[find(x)]=find(y); } int Boruvka() {
int tot=0;
for (int i=1; i<=n; ++i) fa[i]=i;
while (true) {
int cur=0;
for (int i=1; i<=n; ++i) d[i]=inf;
for (int i=1; i<=m; ++i) {
int a=find(edge[i].x), b=find(edge[i].y), c=edge[i].w;
if (a==b) continue;
cur++;
if (c<d[a] || c==d[a] && i<e[a]) d[a]=c, e[a]=i;
if (c<d[b] || c==d[b] && i<e[b]) d[b]=c, e[b]=i;
}
if (cur==0) break;
for (int i=1; i<=n; ++i) if (d[i]!=inf && !v[e[i]]) {
join(edge[e[i]].x, edge[e[i]].y), tot+=edge[e[i]].w;
v[e[i]]=true;
}
}
return tot;
}

Borůvka (Sollin) 算法求 MST 最小生成树的更多相关文章

  1. Prim求MST最小生成树

    最小生成树即在一个图中用最小权值的边将所有点连接起来.prim算法求MST其实它的主要思路和dijkstra的松弛操作十分相似 prim算法思想:在图中随便找一个点开始这里我们假定起点为“1”,以点1 ...

  2. Codeforces.888G.Xor-MST(Borůvka算法求MST 贪心 Trie)

    题目链接 \(Description\) 有一张\(n\)个点的完全图,每个点的权值为\(a_i\),两个点之间的边权为\(a_i\ xor\ a_j\).求该图的最小生成树. \(n\leq2*10 ...

  3. 克鲁斯卡尔(Kruskal)算法求最小生成树

    /* *Kruskal算法求MST */ #include <iostream> #include <cstdio> #include <cstring> #inc ...

  4. 最小生成树-Borůvka算法

    一般求最小生成树的时候,最流行的是Kruskal算法,一种基于拟阵证明的贪心,通过给边排序再扫描一次边集,利用并查集优化得到,复杂度为\(O(ElogE)\).另一种用得比较少的是Prim算法,利用优 ...

  5. 【做题】CSA72G - MST and Rectangles——Borůvka&线段树

    原文链接 https://www.cnblogs.com/cly-none/p/CSA72G.html 题意:有一个\(n \times n\)的矩阵\(A\),\(m\)次操作,每次在\(A\)上三 ...

  6. MST最小生成树及Prim普鲁姆算法

    MST在前面学习了Kruskal算法,还有一种算法叫做Prim的.这两者的区别是Prim算法适合稠密图,比如说鸟巢这种几乎所有点都有相连的图.其时间复杂度为O(n^2),其时间复杂度与边的数目无关:而 ...

  7. [BZOJ1937][SHOI2004]Mst最小生成树(KM算法,最大费用流)

    1937: [Shoi2004]Mst 最小生成树 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 802  Solved: 344[Submit][Sta ...

  8. 【BZOJ1937】[Shoi2004]Mst 最小生成树 KM算法(线性规划)

    [BZOJ1937][Shoi2004]Mst 最小生成树 Description Input 第一行为N.M,其中 表示顶点的数目, 表示边的数目.顶点的编号为1.2.3.…….N-1.N.接下来的 ...

  9. HDU-1233 还是畅通工程 (prim 算法求最小生成树)

    prim 算法求最小生成树 还是畅通工程 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

随机推荐

  1. js 数组相减 (一个数组去掉不符合条件的子数组)

    数组相减?我也希望将来在ES8或者更好js版本能带来数组之间相互运算的方法,但是现在不能,咱们只能靠已有的方法实现: var arr1 = [2,3,5,88,99,444,66],arr2 = [2 ...

  2. MapReduce(3): Partitioner, Combiner and Shuffling

    Partitioner: Partitioning and Combining take place between Map and Reduce phases. It is to club the ...

  3. Docker 换源

    近几天又折腾起 docker来了    我发现自己在拉镜像的时候,总是超时    然后百度了一下  说要换源 90sec的一个水友 推荐了我 阿里云的加速源    我看了还是免费就想试一下 讲一下过程 ...

  4. JavaScript PriorityQueue

    function PriorityQueue() { var items = []; function QueueElement(element, priority) { this.element = ...

  5. LeetCode #237. Delete Node in a Linked List 删除链表中的节点

    https://leetcode-cn.com/problems/delete-node-in-a-linked-list/ 非常巧妙的一道题. 题目没有给head,心想没有head我怎么才能找到要删 ...

  6. 小Z的袜子(题解)(莫队)

    小Z的袜子(题解)(莫队) Junlier良心莫队 题目 luoguP1494 [国家集训队]小Z的袜子 code #include<bits/stdc++.h> #define lst ...

  7. 浅谈Linux下的rpm

      虽然现在很多人都使用yum去替代rpm了,但是rpm在一些特殊场合下还是有其作用的,比如查询跟验证已安装的rpm包,rpm全称Redhat Package Manager,是一种用于互联网下载包的 ...

  8. 关于URL和URI的最简单理解

    以下面网址为例: http://www.sina.com/news/1.html 那么,http://www.sina.com/news/1.html就表示URL,用于标识互联网中的某一资源:/new ...

  9. angularjs calling order

    Here's the calling order: app.config()app.run()directive's compile functions (if they are found in t ...

  10. Python之读写文本数据

    知识点不多 一:普通操作  # rt 模式的 open() 函数读取文本文件 # wt 模式的 open() 函数清除覆盖掉原文件,write新文件 # at 模式的 open() 函数添加write ...