LUOGU P4609 [FJOI2016]建筑师(第一类斯特林数)
解题思路
好神仙的思路,首先一种排列中按照最高点将左右分开,那么就是要在左边选出\(a-1\)个,右边选出\(b-1\)一个,这个如何计算呢?考虑第一类斯特林数,第一类斯特林数是将\(n\)个数分成\(m\)个圆排列的方案数,在这道题中,假如划分成圆排列之后,将圆排列从最大值处断开可以造成\(1\)的贡献。那么答案就为\(s(n-1,a+b-2)*C(a+b-2,a-1)\)。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=50005;
const int A=205;
const int MOD=1e9+7;
typedef long long LL;
inline int rd(){
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
}
int n,m,s[N][A],C[A][A],a,b;
inline void prework(){
C[0][0]=1;
for(int i=1;i<=200;i++){
C[i][0]=1;
for(int j=1;j<=i;j++)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
}
s[0][0]=1; int Min;
for(int i=1;i<=200;i++) s[i][i]=1;
for(int i=1;i<=50000;i++){
Min=min(i,200);
for(int j=1;j<=Min;j++)
s[i][j]=(1ll*(i-1)*s[i-1][j]%MOD+s[i-1][j-1])%MOD;
}
}
int main(){
prework();
for(int T=rd();T;T--){
n=rd(),a=rd(),b=rd();
printf("%lld\n",1ll*C[a+b-2][a-1]*s[n-1][a+b-2]%MOD);
}
return 0;
}
LUOGU P4609 [FJOI2016]建筑师(第一类斯特林数)的更多相关文章
- Luogu4609 FJOI2016 建筑师 第一类斯特林数
题目传送门 题意:给出$N$个高度从$1$到$N$的建筑,问有多少种从左往右摆放这些建筑的方法,使得从左往右看能看到$A$个建筑,从右往左看能看到$B$个建筑.$N \leq 5 \times 10^ ...
- Luogu P4609 [FJOI2016]建筑师&&CF 960G Bandit Blues
考虑转化题意,我们发现其实就是找一个长度为\(n\)的全排列,使得这个排列有\(A\)个前缀最大值,\(B\)个后缀最大值,求方案数 我们考虑把最大值拎出来单独考虑,同时定义一些数的顺序排列为单调块( ...
- Luogu4609 FJOI2016建筑师(斯特林数)
显然排列中的最大值会将排列分成所能看到的建筑不相关的两部分.对于某一边,将所能看到的建筑和其遮挡的建筑看成一个集合.显然这个集合内最高的要排在第一个,而剩下的建筑可以随便排列,这相当于一个圆排列.同时 ...
- 洛谷P4609 [FJOI2016]建筑师 【第一类斯特林数】
题目链接 洛谷P4609 题解 感性理解一下: 一神带\(n\)坑 所以我们只需将除了\(n\)外的\(n - 1\)个元素分成\(A + B - 2\)个集合,每个集合选出最大的在一端,剩余进行排列 ...
- 洛谷P4609 [FJOI2016]建筑师(第一类斯特林数+组合数)
题面 洛谷 题解 (图片来源于网络,侵删) 以最高的柱子\(n\)为分界线,我们将左边的一个柱子和它右边的省略号看作一个圆排列,右边的一个柱子和它左边的省略号看作一个圆排列,于是,除了中间的最高的柱子 ...
- P4609 [FJOI2016]建筑师(第一类斯特林数)
传送门 没想到连黑题都会有双倍经验的 其实这题本质上是和CF960G Bandit Blues一样的,不过那里是要用分治FFT预处理第一类斯特林数,这里直接打表预处理第一类斯特林数就可以了 //min ...
- 【Luogu4609】建筑师(第一类斯特林数,组合数学)
[Luogu4609]建筑师(组合数学) 题面 洛谷 题解 首先发现整个数组一定被最高值切成左右两半,因此除去最高值之后在左右分开考虑. 考虑一个暴力\(dp\) ,设\(f[i][j]\)表示用了\ ...
- CF960G Bandit Blues 第一类斯特林数、NTT、分治/倍增
传送门 弱化版:FJOI2016 建筑师 由上面一题得到我们需要求的是\(\begin{bmatrix} N - 1 \\ A + B - 2 \end{bmatrix} \times \binom ...
- [洛谷P4609] [FJOI2016]建筑师
洛谷题目链接:[FJOI2016]建筑师 题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 \(n\) 个建筑,每个建筑的高度是 \(1\) 到 \(n\) 之间的一 ...
随机推荐
- mysqladmin - 管理 MySQL 服务器、获取运行状态
官方文档 mysqladmin 是管理 MySQL 服务器的客户端,可以用来检测服务器的配置和当前状态.创建和删除数据库等. 1. mysqladmin 的调用语法 shell> mysqlad ...
- 编程语言-Python-GUI
PyQt5 import sys from PyQt5 import QtWidgets,QtCore app = QtWidgets.QApplication(sys.argv) widget = ...
- [LeetCode] 72. Edit Distance(最短编辑距离)
传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...
- Codeforces - 1195D1 - Submarine in the Rybinsk Sea (easy edition) - 水题
https://codeforc.es/contest/1195/problem/D1 给\(n\)个等长的十进制数串,定义操作\(f(x,y)\)的结果是"从\(y\)的末尾开始一个一个交 ...
- CSRF——跨站请求伪造
一.CSRF是什么CSRF,全称:Corss-site request forgery,中文名称:跨站请求伪造.CSRF攻击比XSS攻击更具危险性,被安全界称为“沉睡的巨人”. 二.CSRF可以做什么 ...
- day64--pymysql模块的使用、视图、触发器、函数、存储过程、事务
一.pymysql的下载和使用 (一)pymysql模块的下载:pip3 install pymysql # 实现:使用Python实现用户登录,如果用户存在则登录成功(假设该用户已在数据库中) im ...
- Django学习——开发你的第一个Django应用2
接着上一节的内容来说.我们将继续关注与上一节制作的polls应用以及Django自动产生额度管理网站. 产生一个管理员用户 首先我们需要产生一个管理员用户,运行如下命令: python manage. ...
- navicat连接Oracle数据库提示错误 ORA-12514
这个是服务名写错了,服务名的字段在Oracle安装路径里找 这个我的服务名,这好像是重装Oracle就会变我之前的事orcl,重装之后发现连接不上数据库了,就倔强着找到了它 备注:如果是连接远程Ora ...
- 02.Linux-CentOS系统NFS挂载时拒绝访问挂载问题
问题: 在挂载nfs时报拒绝访问挂载:mount -t nfs 192.163.1.10:/home/opneuser/upload /home/openuser/upload/ 报错信息:Mount ...
- qt opencv 视频分析
脱岗 越线 qimage qpixmap opencv 回调视频采集