BZOJ2097 [Usaco2010 Dec]Exercise 奶牛健美操 贪心
题目传送门
https://lydsy.com/JudgeOnline/problem.php?id=2097
题解
显然二分一个 \(mid\) 表示每一块的直径长度的最大值,求最少需要多少连通块。
然后我们发现如果一个合法连通块的直径没有经过这个连通块的顶点,那么在顶点上加边时,这个连通块的直径就可以忽略了,因为无论如何都无法使得这个原来的直径边长了。因此只需要考虑从顶点向下的最长链就可以了。
于是我们记录一个 \(f[i]\) 表示以 \(i\) 为根的连通块的最长链的长度。然后贪心,从子树合并到根的时候,我们将所有的 \(f[son]\) 排序,然后找到最大满足相邻的两个合并起来小于等于 \(mid\) 的。后面的就全部需要割掉了。
代码如下,由于需要排序,时间复杂度 \(O(n\log n)\)。
#include<bits/stdc++.h>
#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back
template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b , 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b , 1 : 0;}
typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;
template<typename I>
inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
}
const int N = 1e5 + 7;
int n, m, cnt;
int tt[N], f[N];
struct Edge { int to, ne; } g[N << 1]; int head[N], tot;
inline void addedge(int x, int y) { g[++tot].to = y, g[tot].ne = head[x], head[x] = tot; }
inline void adde(int x, int y) { addedge(x, y), addedge(y, x); }
inline void dfs(int x, const int &mid, int fa = 0) {
for fec(i, x, y) if (y != fa) dfs(y, mid, x);
tt[0] = 0, f[x] = 0;
for fec(i, x, y) if (y != fa) tt[++tt[0]] = f[y] + 1;
std::sort(tt + 1, tt + tt[0] + 1);
for (int i = tt[0]; i; --i)
if ((i == 1 && tt[i] <= mid) || tt[i] + tt[i - 1] <= mid) {
f[x] = tt[i];
break;
} else ++cnt;
}
inline bool check(const int &mid) {
cnt = 0;
dfs(1, mid);
return cnt <= m;
}
inline void work() {
int l = 0, r = n - 1;
while (l < r) {
int mid = (l + r) >> 1;
if (check(mid)) r = mid;
else l = mid + 1;
}
printf("%d\n", l);
}
inline void init() {
read(n), read(m);
for (int i = 1; i < n; ++i) {
int x, y;
read(x), read(y);
adde(x, y);
}
}
int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}
BZOJ2097 [Usaco2010 Dec]Exercise 奶牛健美操 贪心的更多相关文章
- BZOJ2097: [Usaco2010 Dec]Exercise 奶牛健美操 贪心+伪树dp+二分
//论全局变量的杀伤力....QAQ#include<cstdio> #include<iostream> #include<cstdlib> #include&l ...
- [bzoj2097][Usaco2010 Dec]Exercise 奶牛健美操_贪心_树形dp_二分
Exercise bzoj-2097 Usaco-2010 Dec 题目大意:题目链接 注释:略. 想法:题目描述生怕你不知道这题在考二分. 关键是怎么验证?我们想到贪心的删边. 这样的策略是显然正确 ...
- BZOJ2097: [Usaco2010 Dec]Exercise 奶牛健美操
n<=100000的树,砍S<n条边,求砍完后S+1棵树的最大直径的最小值. 树的直径要小小哒,那考虑一棵子树的情况吧!一棵子树的直径,就是子树根节点各儿子的最大深度+次大深度.就下面这样 ...
- [Usaco2010 Dec]Exercise 奶牛健美操
[Usaco2010 Dec]Exercise 奶牛健美操 题目 Farmer John为了保持奶牛们的健康,让可怜的奶牛们不停在牧场之间 的小路上奔跑.这些奶牛的路径集合可以被表示成一个点集和一些连 ...
- BZOJ_2097_[Usaco2010 Dec]Exercise 奶牛健美操_二分答案+树形DP
BZOJ_2097_[Usaco2010 Dec]Exercise 奶牛健美操_二分答案+树形DP Description Farmer John为了保持奶牛们的健康,让可怜的奶牛们不停在牧场之间 的 ...
- 【bzoj2097】[Usaco2010 Dec]Exercise 奶牛健美操 二分+贪心
题目描述 Farmer John为了保持奶牛们的健康,让可怜的奶牛们不停在牧场之间 的小路上奔跑.这些奶牛的路径集合可以被表示成一个点集和一些连接 两个顶点的双向路,使得每对点之间恰好有一条简单路径. ...
- BZOJ 2097: [Usaco2010 Dec]Exercise 奶牛健美操 二分 + 贪心 + 树上问题
Code: #include<bits/stdc++.h> using namespace std; #define setIO(s) freopen(s".in",& ...
- BZOJ——T 2097: [Usaco2010 Dec]Exercise 奶牛健美操
http://www.lydsy.com/JudgeOnline/problem.php?id=2097 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: ...
- bzoj 2097: [Usaco2010 Dec]Exercise 奶牛健美操【二分+树形dp】
二分答案,然后dp判断是否合法 具体方法是设f[u]为u点到其子树中的最长链,每次把所有儿子的f值取出来排序,如果某两条能组合出大于mid的链就断掉f较大的一条 a是全局数组!!所以要先dfs完子树才 ...
随机推荐
- kibana使用日志时间进行排序
kibana默认的是按照客户端的采集时间(@timestamp)进行排序,这往往不是我们所需要的,我们需要的是对日志实际时间进行排序,要解决这个问题,有很多种方法,可以在elasticsearch建立 ...
- 【HDOJ6625】three arrays(Trie树,贪心)
题意:给定两个长均为n的序列a和b,要求两两配对,a[i]和b[j]配对的值为a[i]^b[j],求字典序最小的配对后的值序列 n<=1e5,a[i],b[i]<2^30 思路: 做法一: ...
- PHP-利用二叉堆实现TopK-算法
介绍 在以往工作或者面试的时候常会碰到一个问题,如何实现海量TopN,就是在一个非常大的结果集里面快速找到最大的前10或前100个数,同时要保证内存和速度的效率,我们可能第一个想法就是利用排序,然后截 ...
- day32—CSS多列布局学习
转行学开发,代码100天——2018-04-17 关于多列布局,前期已经梳理过,今天的培训课程学习中再次提及,趁此也做个总结和检验. 多列布局的介绍参考: day08—css布局解决方案之多列布局 ...
- Mac版-python环境配置(一):Python下载安装
Mac OS X系统自带python,可以在终端输入python查看版本[输入exit()即可退出],如下: 从上图中可以看到,mac自带python 2.7.10,版本相对较低.现在python已升 ...
- Codeforces Round #410 (Div. 2)B. Mike and strings(暴力)
传送门 Description Mike has n strings s1, s2, ..., sn each consisting of lowercase English letters. In ...
- Git008--远程仓库
Git--远程仓库 本文来自于:https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000/ ...
- Macaca的Python的api整理
整理了下Macaca的API,做成思维脑图,方便阅览. WebDriver 安装 pip install wd git clone https://github.com/macacajs/wd.py. ...
- IDEA 光标显示注释
- JAVA线程初体验
线程的创建 线程的启动和停止 /** * 演员类 继承Thread类 * @author Administrator * */ public class Actor extends Thread { ...